moray offshore renewables ltd

Developing Wind Energy In The Outer Moray Firth

Environmental Statement

Modified Transmission Infrastructure for Telford, Stevenson and MacColl Wind Farms

Technical Appendix 4.1 A Subtidal Ecology Characterisation

Modified Transmission Infrastructure for Telford, Stevenson and MacColl Wind Farms This document was produced by Fugro EMU Ltd on behalf of Moray Offshore Renewables Ltd Ы **Document Owner** MORL **Document Status** Final File Name Originated Approved Revision Date Description Checked By Ву Бy A1 13/06/2014 Draft for review PDB PAE 20/06/2014 A2 Draft for review PDB PAE 23/06/2014 PDB PAE CR A3 Final

moray offshore renewables limited

4th Floor 40 Princes Street Edinburgh EH2 2BY

Tel: +44 (0)131 556 7602

Table of Contents

1	Intro	oduction	. 4
	1.1 1.2 1.3	Study Background Aims of the study The background physical and biological environment	4 4 4
2	Met	hod	. 9
	2.1 2.2 2.3 2.4	Survey Design Seabed video and photographic stills Sediment Grab Sampling Laboratory methods	9 10 11 12
3	Res	sults	13
	3.1 3.2 3.3 3.4	Biological conditions Features of conservation interest Sediment type (PSD) Sediment chemistry	13 22 23 25
4	Disc	cussion and Conclusions	30
5	Refe	erences	31

List of Appendices

Appendix 1 – Survey logs Appendix 2 – Grab photographs Appendix 3 – Video analysis Appendix 4 – PSD results Appendix 5 – Sediment chemistry results Chart Appendix

1 Introduction

1.1 Study Background

1.1.1 Following recent consent award for the development of the Telford, Stevenson and MacColl sites offshore wind farm, Moray Offshore Renewables Ltd. (MORL) (a consortium developer comprising EDP Renovaveis and Repsol Nuevas Energias UK (formerly SeaEnergy Renewables) was subsequently offered an alternative grid connection. Accordingly, MORL commissioned a series of additional technical studies to support a further consent application and associated Environmental Statement (ES) for a new proposed cable route corridor and transmission infrastructure (the modified TI).

1.1.2. This document presents a characterisation of the subtidal benthic ecology of the modified TI. It describes the seabed video survey and grab sampling and analysis methods used to acquire characterisation data along the proposed route corridor of the export cable and provides an interpretation of the subtidal benthic environment in terms of the seabed habitats and conspicuous epifaunal communities observed.

1.1.3. The proposed cable route corridor is approximately 52 km long and runs in an approximately southerly direction between the three consented wind farms and the proposed landfall site at Inverboyndie. The cable route corridor survey results are presented within this Technical Report as indicated in Figure 1.1 (Chart Appendix). Water depths throughout the length of cable range from <10 to >90m below chart datum.

1.2 Aims of the study

1.2.1. Study aims included;

- Characterisation of seabed substrates, features and associated subtidal epifaunal communities within the study area; and
- Collection of sediment samples for chemistry and particle size distribution (PSD) analyses to further aid assessment of potential wind farm impacts.

1.2.2. Benthic ecological characterisation of the three consented wind farm sites (offshore generating station) have been reported previously (MORL, 2012). The intertidal benthic ecology at the new proposed landfall site is presented in Technical Appendix 4.5 A. This report relates solely to the modified TI corridor and close environs.

1.3 The background physical and biological environment

1.3.1. Irving (1996) could not provide any great detail for the sublittoral sediments of the Moray Firth stating only that sand and mixed sediments dominate offshore and that the near shore is often a reflection of the littoral environment to certain degrees.

1.3.2. The predictive MESH seabed habitat map for the Moray Firth area (Figure 1.2 – Chart Appendix) provides a guide to broad seabed habitat types likely to be encountered and indicates that along the modified offshore export cable route corridor deep circalittoral sand dominates with some deep circalittoral and circalittoral / infralittoral coarse sediment, these latter two evident in the nearshore area (Figure 1.2 – Chart Appendix). However, biological community boundaries are unlikely to be so neatly delineated (Eleftheriou *et al.*, 2004).

1.3.3. The water depth in the Moray Firth is generally less than 80 m with the exception of the southeast corner where depths of more than 200 m can occur in fault-related deeps (Adams and Martin, 1986). This is the area known as the Southern Trench which is currently delineated as one of four Marine Protected Area (MPA) Search locations identified by the Scottish Government (Figure 1.3 - see below). The trench is 10 km north of Fraserburgh, reaches at least 250 m in depth and is more than 120 km in length (Holmes *et al.*, 2004). This is where a historical record of the cold-water coral *Lophelia pertusa* has been reported (Wilson 1979) although there is no recent evidence to suggest colonies of potential conservation interest exist in the Moray Firth (DTI 2004; Hall-Spencer and Stehfest 2009; Marine Scotland 2012).

1.3.4. Shallow shelf seas have close bentho-pelagic coupling and, therefore, the benthic invertebrate fauna play an important role in nutrient cycling, detrital decomposition as well as providing food for higher trophic levels (Reiss *et al.*, 2009). Furthermore the spatial distribution of species in the different regions of the North Sea is significantly correlated to the food availability (Kröncke, 2006). Wieking and Kröncke (2005) state that in shallow shelf seas, like the North Sea, the major source of organic material is from primary production and benthic organisms must rely on this for their energy and nitrogen requirements.

1.3.5. Hartley and Bishop (1986) investigated the macrobenthos of the Beatrice field from survey work carried out in 1977, 1980 and 1981. Some taxa such as Spiophanes bombyx and Cochlodesma praetenue, were found across the survey area. The shallower northeast of the sampling grid in this study was on the Smith Bank. Species restricted to these sites, or occuring at the greatest densities here, included the polychaetes *Travisia forbesii* and *Ophelia borealis*, the amphipod *Bathyporeia* spp. and the bivalve molluscs, Crenella decussata and Tellina pyqmaea each of which are characteristic of sand / coarse sand sediments. Taxa widely recorded but absent or at low abundances in the northeast of the grid showed a preference muddier mixed sediments. These included the polychaetes *Pholoe minuta, Goniada maculata*, the amphipod *Urothoe elegans*, the bivalve molluscs Nucula tenuis, Dosinia lupinus and the brittlestar, Acrocnida brachiata. While examples of taxa restricted to the deeper stations to the west were the tube building polychaete *Myriochele* sp., the cumacean, Eudorella truncatula and the bivalve mollusc Thyasira flexuosa. Other benthic fauna with a preference for clean mixed sands, such as the bivalve molluscs Gari fervensis, Abra prismatica and Tellina fabula tended to be reduced or absent from both the coarser shallower sediments of the northeast and the deeper, muddier, stations to the west. Hartley and Bishop (1986) note that the species richness encountered at individual stations was more similar to inshore areas such as Sullom Voe, Shetland than offshore areas of the North Sea.

1.3.6. ERT (2005) also found high species richness from a survey of the Beatrice wind farm demonstrator site. Sites across the survey area were characterised by the polychaetes *Chaetozone* setosa, Lumbrineris gracilis and Exogone hebes, the amphipods U. elegans, Ampelisca tenuicornis and Bathyporeia spp., the bivalve mollusc T. fabula and the pea urchin E. pusillus. One site which had a high coverage of dead shell recorded species such as the squat lobster Galathea intermedia, the chiton Leptochiton asellus and the brittle star Amphipholis squamata as well as an abundance of the small fanworm Jasminiera caudata.

1.3.7. Samples of medium to coarse sands taken just north-east of the Beatrice oilfield for the Jacky oilfield development (Ithaca Energy, 2008) were mostly dominated by *S. bombyx, T. pygmaea, C. pratenue* and *E. pusillus*. Two stations with high proportions of gravel and pebbles were dominated by epifaunal species such as *G. intermedia* and *L. asellus*.

1.3.8. Historically, benthic studies within the Moray Firth have focused on the Smith Bank and the Beatrice Field (Eleftheriou *et al.*, 2004). The communities studied on the Smith Bank and Beatrice field have shown considerable persistence in the medium term (Eleftheriou *et al.*, 2004). This suggests relatively stable environments.

1.3.9. The Clean Seas Environment Monitoring Programme (CSEMP) site in the outer Moray Firth (previous name Station 105) located just inside the southern edge of the western development area was found to be dominated by *Myriochele* sp. (18%) and the mollusc *Circomphalus casina* (9%) (UK NMP 1994).

1.3.10. Cefas (2005), in a study of the benthic ecology of the western North Sea identified two clusters in the northern North Sea with sites in the Moray Firth clustered in Group F. The top five characterising species were *Galathowenia oculata, Goniada maculata, Spiophanes kroeyeri, Amphiura filiformis* and *Paramphinome jeffreysii*.

1.3.11. Rees *et al.* 2007 in their analysis of the North Sea Benthos Project 2000 data grouped sites in the Moray Firth with those in the central and northern North Sea at depths >50m (mean depth of 96m). These sites were composed of muddy sand and fine sand and had *Myriochele* sp., *A. filiformis* and *Spiophanes* spp. as the dominant fauna (Rees *et al.*, 2007; Reiss *et al.*, 2009).

1.3.12. Calloway *et al.* (2002) in a study of the epibenthos of the North Sea identified a northern North Sea station cluster which occurred between 50-100 m (within which the Moray Firth site was found). The characterising species were whelks such as *Neptunea antiqua* and *Colus gracilis*, the hermit crabs *Pagurus pubescens* and *Anapagurus laevis* as well as other species such as *Hydroides norvegica, Hyas coarctatus, Flustra foliacea* and *Epizoanthus papillosus*. Jennings *et al.* (1999) identified some similar species as well as *Asterias rubens, Crangon allmani* and *Astropecten irregularis*. Attached species accounting for similarity within the northern North Sea cluster were the hydroids *Flustra foliacea, Hydrallmania falcata, Lafoea dumosa,* the sponge *Suberites ficus,* the sea-squirt *Ciona intestinalis* and the bryozoan *Alcyonidium diaphanum* (Jennings *et al.,* 1999).

1.3.13. Beatrice Offshore Wind Ltd (BOWL) undertook a comparable cable route video survey just over 20 km west of the proposed corridor as part of the EIA investigations and development application for the Beatrice Offshore Wind Farm (BOWL, 2012 and 2013). The Beatrice study found burrowed mud and fine-medium sand with shell fragments dominated their study area. In the offshore area the burrowed mud habitat, although with a low density of sea pens, was identified as the biotope SS.SMu.CFiMu.SpnMeg - Sea pens and burrowing megafauna in circalittoral. Inshore areas were mainly fine-medium sands and gravels with small patches of cobble reef. This area was considered to be a fairly rich example of the biotope SS.SCS.CCS.PomB Pomatoceros triqueter with barnacles, coralline algae and bryozoan crusts on unstable circalittoral cobbles and pebbles. It was noted that the biotope may be considered as being potential Annex I cobble reef (Irving, 2009). The sublittoral area closest to the shore was recorded as being composed very clean fine sand with no visible epifauna.

1.3.14. The Marine (Scotland) Act 2010 makes provision for the publication of certain species and habitats that are considered important for nature conservation. These are referred to as Priority Marine Features (PMFs). There are fourteen invertebrate species referred to in the current draft recommended PMF list (eight in the species list and nine associated with a particular biotope in the habitat PMF list). Of those seventeen species only three are regarded to have some likelihood of being found in the area of the offshore infrastructure study area. These are the European spiny lobster (*Palinurus elephas*), the Ocean quahog (*Arctica islandica*) (both PMF species) and the mud burrowing amphipod *Maera loveni* which is associated with a burrowed mud PMF habitat. Figure 1.3 presents the distribution of these species.

1.3.15. The OSPAR Threatened and Declining (T&D) habitat 'Sea-pen and burrowing megafauna communities' has been found across the southern half of the Moray Firth (Figure 1.4 – Chart Appendix). This habitat broadly equates to the burrowed mud MPA search feature. Burrowed mud extends across the southern half of the Moray Firth and as such is likely to intersect with the cable route. The biotope 'Seapens and burrowing megafauna in circalittoral soft mud' SS.SMu.CFiMu.SpnMeg (Connor *et al.*, 2004) is considered a component of both the OSPAR T&D and PMF "burrowed mud" habitat features. Furthermore, Greathead *et al.* (2007) have maps showing the location of seapens around Scotland with both *Pennatula phosphorea* and *Virgularia mirabilis* found at various locations in the Moray Firth.

1.3.16. Hydrography clearly helps shape the glacially derived sedimentary environment in this area and although sediment plays an important role in defining biological communities (Eleftheriou *et al.*, 2004), benthic biotopes can only really be adequately mapped through survey work. Therefore from the predicted habitats map (Figure 1.2 – Chart Appendix) the extent of the seapen and burrowing megafauna habitat, typically found in a range of sediments from muddy sands with varying mixtures of shell and gravel to fine, clay-dominated muds (Hughes, 1998) might not be guessed at (Figure 1.4 – Chart Appendix).

Modified Transmission Infrastructure for Telford, Stevenson and MacColl Wind Farms

Figure 1.3: Distribution maps of PMF species (area in pink is an MPA 'Search location'; area in orange is the R3 zone; area outlined in red is 'offshore deep sea muds'; snapshots taken from Marine Scotland's interactive National Marine Plan).

2 Method

2.1 Survey Design

2.1.1. Following receipt of advice from Marine Scotland a seabed video survey of the entire proposed cable route was undertaken with samples of seabed sediment taken at selected points for PSD analysis and sediment chemistry. Survey specifications, sample analyses and data analyses were agreed with Marine Scotland prior to mobilisation to ensure statutory requirements were addressed (Fugro EMU, 2014). Table 2.1 summarises the sampling effort. The vessel track and sampling array is presented in Figure 2.1 (Chart Appendix).

Sampling techniques	No. stations	Purpose	Representative photograph of kit
Seabed digital video and stills photography	n/a	Collection of seabed images to inform habitat and epifaunal community assessment.	
0.1 m ² Day Grab sampling	10	Collection of seabed sediment samples for sediment chemistry analysis and associated PSD.	

Table 2.1:	Summary of sample stations.
------------	-----------------------------

2.1.2. The survey was conducted over ten days ($16^{th} - 26^{th}$ of May, 2014). All survey work was undertaken on board the survey vessel MV Ocean Dawn. Summary survey logs are provided in Appendix I.

Sample positioning for each of the grabs and seabed video samples was achieved using Fugro EMU's Hemisphere Crescent V100 DGPS which has a stated horizontal accuracy of <0.6 m (95% confidence). Navigation and position recording was achieved using Trimble's HYDROPro software version 2.30.844.

2.1.3. Observer records were collated throughout each video deployment including substrate type and conspicuous epifauna together with any observations of burrows and tubes, (i.e. *Nephrops* burrows).

2.1.4. Upon return from the field, the seabed digital video footage was fully reviewed on Fugro EMU's office video editing suite to identify and describe the characterising habitat types and associated epifauna.

2.1.5. The subtidal benthic ecology survey was conducted following the Cefas Guidelines described in Ware & Kenny (2011). Methods also followed those applied at the three consented wind farms and at Beatrice to ensure data compatibility across the Moray developments and to permit a consistent EIA and cumulative effects assessment (MORL, 2012, BOWL, 2012).

2.1.6. The survey array was designed to provide adequate coverage of the predicted direct and indirect effects of the installation, operation and decommissioning of the export cables and representing the main characterising habitats present as determined from the following data sources:

- Admiralty chart data;
- Desk review/gap analysis (drawing upon scoping report); and
- Consultation with Marine Scotland Science and Scottish Natural Heritage (SNH).

2.1.7. The subtidal survey included the following techniques;

- seabed imagery via drop down video for habitat assessment; and
- single 0.1m² Day sample at selected sample locations for PSD and sediment chemical analyses.

2.1.8. Geophysical data was not available to inform the subtidal benthic ecology survey. The subtidal ecology survey was therefore a continuous seabed digital video tow, with collection of photographic stills, along the centre line of the proposed cable corridor. In this way the presence, status and distribution of epibenthic species, biotopes and potential sensitive receptors, such as PMF or Annex I features, was recorded throughout the entire length of the proposed subtidal portion of the export cable corridor up to an inshore point where the bathymetry allowed safe vessel access (typically around the 5 m contour). Photographs were collected to represent each habitat, community and feature type.

2.1.9. In the event that the subsequent geophysical data identifies a seabed feature not covered by the video survey, then a pre-construction video survey shall be undertaken to ground-truth the feature and inform any micro-siting, as necessary.

2.2 Seabed video and photographic stills

2.2.1. All video footage and photographic stills were geo-referenced and used to assign epibenthic biotopes based on the habitat and species present.

2.2.2. Species were identified and semi-quantified using the SACFOR abundance scale from both the video footage and selected representative photographic stills (Table 2.2). Substrate composition was recorded based upon principal sediment characteristic (i.e. rippled fine sand, coarse sand etc). Epibenthic biotope classification was then conducted using the JNCC Marine Habitat Classifications for Britain and Ireland (Connor *et al.*, 2004) based on those communities present. Classified epibenthic biotopes, were mapped throughout the export cable corridor. The extents of the boundaries will be interpolated using acoustic data drawn from the geophysical surveys, once available. Any sensitive features, such as PMF or Annex I habitats will be recorded and shown on the biotope map.

Growth Form			Size of individuals/colonies				
%cover	Crust/Meado w	Massive/Tur f	<1cm	1-3cm	3-15cm	>15cm	Density
>80%	S		S				>1/0.001 m ²
40-79%	А	S	А	S			1-9/0.001 m ²
20-39%	С	А	С	А	S		1-9/0.01 m ²
10-19%	F	С	F	С	А	S	1-9/0.1 m ²
5-9%	0	F	0	F	С	А	1-9/ m ²
1-5% or density	R	0	R	0	F	С	1-9/10 m ²
<1% density	R	R		R	0	F	1-9/100 m ²
					R	0	1-9/1000 m ²
						R	<1/1000 m ²

Key: S = Superabundant, A = Abundant, C = Common, F = Frequent, O = Occasional, R = Rare, P = present (used when the abundance of an organism could not be estimated accurately).

2.3 Sediment Grab Sampling

2.3.1. At all 10 stations, a $0.1m^2$ Day grab with stainless steel buckets was successfully deployed to obtain sediment samples for laboratory chemistry and PSD analyses (see Figure 2.1 – Chart Appendix). Prior to deployment at each station the metal sample bucket of the grab was cleaned with pentane to prevent cross contamination between samples.

2.3.2. Upon retrieval of each sample on board the vessel a sub-sample of between 200-500 g was collected for PSD analysis. In addition, the top few centimetres of sediment was also sub-sampled and carefully placed in pre-treated labelled sample jars depending upon the chemical analysis required and stored frozen prior to laboratory testing for the following parameters:

- Metals Arsenic (As) , Cadmium (Cd), Chromium (Cr), Copper (Cu), Mercury (Hg), Nickel (Ni), Lead (Pb), Tin (Sn), Zinc (Zn);
- Organotins (Dibutyl Tin, Dioctyl Tin, Diphenyl Tin, Tetrabutyl Tin, Tributyl Tin, Triphenyl Tin)
- Total petroleum hydrocarbons;
- Polycyclic aromatic hydrocarbons (PAHs) (16 US EPA Priority Pollutants); and
- Polychlorinated biphenyls (PCBs), ICES 7 congeners (PCB 28, 52, 101, 118, 138, 153, 180).

2.4 Laboratory methods

Particle Size Distribution (PSD) Analysis

2.4.1. PSD analysis was undertaken at Fugro EMU's sediment laboratory using in house methods based on BS1377: Parts 1 – 3: 1990 (dry sieving) and BS13320: 2009 (laser diffraction). The latter method was used to analyse the <63 μ m sediment fraction.

2.4.2. Representative sub-samples of each sediment sample were oven dried to constant weight at 105 \pm 5°C before routinely wet sieving to remove silt and clay-sized particles of <63 µm. The remaining coarser material was again oven dried to constant weight at 105 \pm 5°C followed by dry sieving through a series of mesh apertures corresponding to 0.5 Phi units as described by the Wentworth scale. The <63 µm sediment fraction was routinely subjected to further analysis via laser diffraction at 0.5 Phi intervals to determine the proportion and distribution of the silt/clay components. The weight of the sediment fraction retained on each mesh was subsequently measured and recorded and merged with the laser diffraction data.

Sediment Chemistry analyses

2.4.3. Samples taken for sediment chemistry analyses were sub-contracted to an experienced UKAS accredited chemistry laboratory. Results were compared to Cefas Action Levels (AL), OSPAR Coordinated Environmental Monitoring Programme (CEMP) criteria as laid out by the UK Clean Seas Environmental Monitoring Programme (CSEMP) and Canadian guideline values to aid assessment of the possible ecological significance of the levels of contaminants found.

2.4.4. Cefas (2003) guidelines are represented by a set of non-regulatory Action Levels which form part of a wider body of evidence for assessment of disposal of dredged materials to sea. Marine Scotland requires, in general, concentrations of contaminants below Revised Cefas Action Level 1 as these are considered of little concern with respect to possible effects on the marine environment. Concentrations above Revised Action Level 2 however suggest that the material is unsuitable for disposal at sea. Values between Levels 1 and 2 may prompt further investigatory work prior to disposal of the material to sea.

2.4.5. Canadian guidelines (CCME 2001) are presented in the form of Interim Sediment Quality Guidelines (ISQGs), principally Threshold Effects Levels (TEL) and Probable Effect Levels (PEL). Generally, concentrations below the TEL are considered the minimal effect range within which adverse effects rarely occur. Above the PEL is the range within which adverse effects frequently occur while between the TEL and PEL is the possible effect range within which adverse effects occasionally occur.

3 Results

3.1 Biological conditions

3.1.1. Full results of the image analysis including sediment habitat types, conspicuous epifauna and associated biotope classifications for the video survey are presented in Appendix 3. The Appendix comprises two parts; (1) an initial spreadsheet showing SACFOR species abundance data and sediment data and (2) biotope descriptions drawing upon the initial spreadsheet information. Summary seabed habitat, species and biotope information is presented in Table 3.1 (the order roughly equates to traversing the proposed cable route from the offshore to the nearshore environment).

Table 3.1:	Summary of habitat, species and biotope information from video and
static image	data.

Sediment habitat type and biotope classification	Characteristic epibenthic species	Areas recorded	Representative seabed image
Slightly shelly, slightly muddy sand. Small areas of dense coarse shelly sand forming small patches of coarse sand waves with coarse shell aggregations in the recesses. Sublittoral sand SS.SSA Not enough mud evident to allocate a muddy sand biotope (SS.SSA.CMuSa)	? Pleuronectes platessa Alcyonidium diaphanum Alcyonium digitatum Asterias rubens Asteroidea Callionymidae Chaetopterus tubes Decapoda Diatomaceous aggregation Flustra foliacea Gadiformes Hydroid/Bryozoan mixed substrate Inachinae Luidia ciliaris Microchirus variegatus Paguridae Pecten maximus PLEURONECTIFORMES Triglidae	Offshore area. At the start of the proposed cable route. See Figure 3.1 (Chart Appendix)	
Slightly shelly, slightly muddy rippled sand. Coarse shelly sand waves occur across the area, with coarse mixed sediment of gravel pebbles and cobbles within the recesses. Regular outcrops of larger areas of coarse mixed sediment Sublittoral sand SS.SSa with Circalittoral mixed sediment SS.SMx.CMx	? Pleuronectes platessa ? Thuiaria thuja Alcyonium digitatum Ammodytidae Aphrodita aculeata Asterias rubens ASTEROIDEA Astropecten irregularis Buccinum undatum Callionymidae Cancer pagurus CARIDEA Chaetopterus tubes Crossaster papposus Diatomaceous aggregation Tubularia indivisa Echinus esculentus Flustra foliacea Gadiformes Hydrallmania falcata Hydroid/Bryozoan mixed substrate Liacinus spp. Luidia sarsi	Offshore area. Two sections in the northern area towards the start of the proposed cable route See Figure 3.1 (Chart Appendix)	

Modified Transmission Infrastructure for Telford, Stevenson and MacColl Wind Farms

Sediment habitat type and biotope classification	Characteristic epibenthic species	Areas recorded	Representative seabed image
	Metridium senile Microchirus variegatus Ophiura ophiura Paguridae Pecten maximus PLEURONECTIFORMES Plumulariidae Securiflustra securifrons Spirobranchus sp. Triglidae Trisopterus lamarkii		
Slightly shelly, slightly muddy rippled sand. Small holes and small burrows evident across the area. Larger fractions of shell hash visible in places. Seapens and burrowing megafauna in circalittoral fine mud SS.SMu.CFiMu.SpnMeg Coarse variant with <i>Virgularia mirabilis</i> dominant.	Alcyonium digitatum Asterias rubens Astropecten irregularis Callionymidae Chaetopterus tubes Diatomaceous aggregation Echinoidea Henricia sp. Hydroid/Bryozoan mixed substrate Ophiura ophiura Paguridae Pecten maximus Pennatula phosphorea PLEURONECTIFORMES Triglidae Virgularia mirabilis	Offshore. See Figure 3.1 (Chart Appendix)	
Area dominated by coarse mixed sediment forming small to approx. 0.5m high coarse gravelly shelly sand waves in places. Large shell hash and gravelly pebbles deposited within the recesses with the occasional cobble. One small boulder seen. Area interspersed with slightly shelly, slightly muddy rippled sand. Sublittoral sand and muddy sands SS.SSa, with circalittoral mixed sediments SS.SMx.CMx	 ?Abietinaria abietina ?Thuiaria thuja Asterias rubens Atelecyclus rotundatus Bryozoa crust Callionymidae Diatomaceous aggregation Flustra foliacea Gadiformes Hydroid/Bryozoan mixed substrate Luidia ciliaris Munida rugosa Ophiura ophiura Paguridae Pecten maximus PLEURONECTIFORMES Sertularia sp. Spirobranchus sp? Trisopterus lamarkii Urticina sp. 	Offshore. See Figure 3.1 (Chart Appendix)	
Area dominated by coarse mixed sediment forming small to approx. 0.5m high coarse gravelly shelly sand waves in places. Large shell hash and gravelly pebbles deposited within the recesses with the occasional cobble. Circalittoral mixed sediments SS.SMx.CMx	Agonus cataphractus Alcyonium digitatum Buccinidae Callionymidae Flustra foliacea Hydroid/Bryozoan mixed substrate Luidia sarsi Munida rugosa Ophiura ophiura Paguridae Pecten maximus Sertularia spp.	Offshore. See Figure 3.1 (Chart Appendix)	

Sediment habitat type and biotope classification	Characteristic epibenthic species	Areas recorded	Representative seabed image
Sandy mud/muddy sand with burrows, mounds and holes. Area of dense bioturbation. Seapens and burrowing megafauna in circalittoral fine mud SS.SMu.CFiMu.SpnMeg	? Echinocardium cordatum Anguilla anguilla/ Myxine glutinosa Anseropoda placenta Asterias rubens ASTEROIDEA Asteroidea (?Leptasterias muelleri) Astropecten irregularis Callionymidae Cancer pagurus Chaetopterus tubes Gadiformes Gobiidae Henricia Hydroid/Bryozoan mixed substrate Liocarcinus Lumpenus lampretaeformis M.merlangus or T.minutus Majoidea Nephrops norvegicus Ophiura ophiura Paguridae Pennatula phosphorea PLEURONECTIFORMES Triglidae Tubularia indivisa Virgularia mirabilis	Offshore. Note that in the more southerly areas, the burrowed mud had the occasional hydroid cluster and outcrop of <i>Tubularia</i> . The fish that are noted were more prevalent to the north. See Figure 3.1 (Chart Appendix)	
Low lying, relatively even sandy mud/muddy sand and large sections of coarse mixed sediment with boulders and cobbles. Circalittoral mixed sediments. SS.SMx.CMx (within areas of SS.SMu.CFiMu.SpnMeg)	Cancer pagurus Ceramaster/Hippasteria Echinus esculentus Hydrallmania falcata Hydroid/Bryozoan mixed substrate Munida rugosa Nemertesia ramosa Pecten maximus Sertularia Spirobranchus Tubularia indivisa	Offshore. See Figure 3.1 (Chart Appendix)	
Low lying, relatively even sandy mud/muddy sand with small burrows, small mounds and holes. Within this area, large sections of coarse mixed sediment with boulders and cobbles. Circalittoral mixed sediments SS.SMx.CMx, within Seapens and burrowing megafauna in circalittoral fine mud SS.SMu.CFiMu.SpnMeg	Tubularia indivisa Hydrallmania falcata Sertularia Nemertesia ramosa Hydroid/Bryozoan mixed substrate Spirobranchus Munida rugosa Cancer pagurus Pecten maximus Ceramaster/Hippasteria Echinus esculentus	Offshore. See Figure 3.1 (Chart Appendix)	

Modified Transmission Infrastructure for Telford, Stevenson and MacColl Wind Farms

Sediment habitat type and biotope classification	Characteristic epibenthic species	Areas recorded	Representative seabed image
Area of hard ground, potentially bedrock in places. Area over-laid with a very coarse mixture of shelly silty sandy, gravelly pebbly cobble matrix with the occasional boulder. A thin covering of mobile sand of varying depths evident over the hard ground. Circalittoral mixed sediments SS.SMx.CMx.	Alcyonium digitatum Asterias rubens ASTEROIDEA Bryozoa crust Cancer pagurus Corallinaceae Echinus esculentus Flustra foliacea Hydroid/Bryozoan mixed substrate Liocarcinus Metridium senile Munida rugosa Paguridae Pecten maximus Plumulariidae Sabella tube Spirobranchus Tubularia indivisa	Offshore. See Figure 3.1 (Chart Appendix)	
Area of what appears to be hard ground in places, over- laid with a very coarse mixture of shelly sandy, gravelly pebbly cobble matrix with a few boulders in places coupled with extensive patches of rippled sand. Circalittoral mixed sediments SS.SMx.CMx with Sublittoral sand and muddy sands SS.SSA	? Omalosecosa ramulosa Agonus cataphractus Alcyonium digitatum Ammodytidae Bryozoa crust Callionymidae Cancer pagurus Chaetopterus tubes Crossaster papposus Echinus esculentus Flustra foliacea Gobiidae Henricia Hydroid/Bryozoan mixed substrate Lanice conchilega Liocarcinus Metridium senile Munida rugosa Paguridae Pecten maximus PLEURONECTIFORMES Plumulariidae Porania pulvillus PORIFERA Spirobranchus Triglidae Trisopterus esmarkii Tubes in Sediment (Oweniidae) Tubularia indivisa Urticina	Offshore. See Figure 3.1 (Chart Appendix)	

Sediment habitat type and biotope classification	Characteristic epibenthic species	Areas recorded	Representative seabed image
Inshore area of rippled sand with a few holes and a biofilm (?diatom) evident across the area which transitions to bedrock and boulder reef with algae further inshore. Sublittoral sand and muddy sands SS.SSA Faunal and algal crusts with Pomatoceros triqueter and sparse Alcyonium digitatum on exposed to moderately wave-exposed circalittoral rock CR.MCR.EcCr.FaAlCr.Pom (sheltered inshore variant) Bedrock and boulder reef CR.MCR.EcCr.FaAlCr.Pom Saunal and algal crusts with Pomatoceros triqueter and sparse Alcyonium digitatum on exposed to moderately wave-exposed circalittoral rock	Sand ASTEROIDEA PLEURONECTIFORMES Biofilm Reef ? Abietinaria abietina Hydroid/Bryozoan mixed substrate Alcyonium digitatum Urticina Metridium senile Spirobranchus Munida rugosa Cancer pagurus Gibbula Bryozoa crust ASTEROIDEA Marthasterias glacialis Crossaster papposus Echinus esculentus Labridae Corallinaceae Encrusting Brown Algae	Inshore area. See Figure 3.1 (Chart Appendix)	
Coarse rippled sand becoming finer inshore with a few holes. Sublittoral sand and muddy sands.SS.SSA (Section 3)	DECAPODA (? <i>Liocarcinus</i>) Paguridae <i>Cancer pagurus</i> <i>Astropecten irregularis</i> ASTEROIDEA <i>Lophius piscatorius</i> Ammodytidae Gadiformes Gobiidae PLEURONECTIFORMES	Inshore area. See Figure 3.1 (Chart Appendix)	

3.1.2. A total of four biotopes were classified along the modified offshore export cable route corridor occurring both singly and as twinned mosaics in some instances. The biotopes encountered included one EUNIS Level 3 Main habitat (SS.SSA), one Level 4 Biotope complex (SS.SMx.CMx), one Level 5 Biotope (SpnMeg) and one Level 6 Sub-biotope (FaAlCr.Pom). The 'Seapens and burrowing megafauna in circalittoral fine mud', SS.SMu.CFiMu.SpnMeg, dominated across the area and occurred in two variant forms. In the inshore area where the rock biotope CR.MCR.EcCr.FaAlCr.Pom was encountered it was also found in two forms.

3.1.3. Other Level 5 sediment biotopes will have been present in the area would require grab sampling in order to discriminate them with any confidence. One Level 5 biotope that was indicated to a degree was '*Flustra foliacea* and *Hydrallmania falcata* on tide-swept circalittoral mixed sediment', SS.SMx.CMx.FluHyd (Appendix 3). However, in the corridor surveyed the evidence for it was weak at best and therefore, while it was noted it was not considered definitive enough to be included in the habitat list.

3.1.4. Figure 3.1 (Chart Appendix) shows the distribution of the classified biotopes (biotope map). Once the side scan sonar data from the geophysical survey becomes available this figure will also indicate the interpolated extent of the biotopes within the corridor.

3.1.5. The biotope map (Figure 3.1 – Chart Appendix) shows that the offshore benthic environment was dominated by sand and muddy sand (SSA), fine mud (SS.SMu.CFiMu) and mixed sediment (SS.SMx.CMx) biotopes. Typical epifauna noted from the seabed video for the offshore SSA habitats were large Pagurid crabs and an array of fish including gurnards, thick backed sole, flat fish, (often plaice) and gadiform fish, largely unidentifiable due to quality of image. A few King scallop (*Pecten maximus*) were seen and small numbers of starfish (common starfish (*Asterias rubens*), Seven-armed starfish (*Luidia ciliaris*)). The hydroid/bryozoan mixed turf and very small occurrences of hornwrack *Flustra foliacea*, were rarely seen, found on small amounts of slightly coarser sediment. Across the area, a gelatinous, filamentous substance was observed, believed to be a diatomaceous floc.

3.1.6. This area of sand and muddy sand was followed in the offshore area by a region where SSA occurred with SS.SMx.CMx. The fauna on the sediment here largely comprised Pagurid crabs, a few small crabs (notably *Liocarcinus*) and a selection of flat fish including plaice and thick backed sole. A variety of starfish were distributed across the area including the sand star (*Astropecten irregularis*), the sun star (*Crossaster papposus*), *Luidia sarsi* and common starfish (*A. rubens*). The foliose hydroid/bryozoan turf including *Hydrallmania* and *Flustra* were largely concentrated on the areas of coarse mixed sediment. A rare occurrence of *Metridium senile* was seen on a large cobble. *Pecten maximus* were more notable across both the sandy and coarser sediments of the site.

3.1.7. When first encountered the sea pen and burrowing megafauna community SS.SMu.CFiMu.SpnMeg occurred in the form of a coarse sediment variation of this biotope. SpnMeg was clearly indicated but the sedimentary conditions excluded the classical representation associated with *Nephrops* grounds. The main fauna noted were flat fish, gurnards, a few starfish and pagurid crabs. Hydroid/bryozoan turf of largely indefinable composition was scattered throughout. King scallop occurred sporadically. The diatomaceous floc was again present across the area. Of particular note was the abundance of the slender sea pen *Virgularia mirabilis* which was very evident and occurred frequently whilst only one phosphorescent sea pen *Pennatula phosphorea* was noted.

3.1.8. The sea pen habitat was followed by another mosaic of SSA and SS.SMx.CMx. Here the main fauna noted were hydroid/bryozoan turf, including hornwrack (*F. foliacea*), *Sertularia, Abietinaria* and potentially, the bottle-brush hydroid (*Thuiaria thuja*). Flat fish, a few starfish and pagurid crabs were evident, along with the round crab (*Atelecyclus rotundatus*). The rugose squat lobster (*Munida rugosa*) was occasionally seen in the coarse sediment. King scallop was noted as occurring in higher densities here occurring relatively regularly throughout.

3.1.9. The SSa/CMx area gave way to an area of solely SS.SMx.CMx comprising coarse gravelly shelly sand waves in places. The main fauna noted were foliose hydroid/bryozoan turf, including *Flustra*, and *Sertularia*. A few starfish and pagurid crabs were evident, along with *M. rugosa* which was occasionally seen in the coarse sediment. King scallop occurred only rarely.

3.2.0. The typical SS.SMu.CFiMu.SpnMeg occurred extensively in the offshore area. Burrowing megafauna were clearly evident, including the phosphorescent sea pen and in some areas, slender sea pen (*Virgularia mirabilis*). Norway lobster (*Nephrops norvegicus*) was sporadically seen. Flat fish were present and a few starfish including goose foot starfish (*Anseropoda placenta*). Pagurid crabs and the occasional decapod (possibly *Liocarcinus*), were in evidence. Gurnards and a few small gadoid fish were also present. Additionally, the edible crab (*Cancer pagurus*) was observed.

3.2.1. A more low-lying form of the SpnMeg biotope was also seen here. In these areas there was a relatively even sandy mud/muddy sand substrate with small burrows and small mounds and holes. Bioturbation was therefore evident but not as deep or dense as those areas more suited to Norway lobster. Occasional small boulders and areas of coarser sediment, with a few cobbles, and mixed pebbles and large shell hash occurred in places. Burrowing megafauna were evident, including the phosphorescent sea pen. Flat fish and a few starfish were also seen, as well as a few large King scallop. The coarser substrate had more dense aggregations of hydroid/bryozoan turf and a very small amount of oaten pipes hydroid *Tubularia indivisa*. Boulders with the plumose anemone *Metridium senile* were present. Sediment with small polychaete tubes forming a 'mat' in places were believed to be a species in the family Oweniidae. Of particular note in this region was the rare occurrence of what is thought to be the burrowing sea anemone Arachnanthus sarsi, a PMF in Scotland (Plate 1). Unfortunately, the quality of the image is such that a degree of caution is necessary with respect to the identification which has been recorded as ?Arachnanthus sarsi. No previous records of the species on the east coast of mainland Scotland could be found. The site where it was observed was roughly 400 m from a grab sampling station (KPA 30). The sediment at this location had a Folk class of slightly gravelly muddy sand and the highest recorded percentage of mud for any of the ten stations sampled at 43.14%.

Modified Transmission Infrastructure for Telford, Stevenson and MacColl Wind Farms

Plate 1 ?Arachnanthus sarsi (red box)

3.2.2. Areas of CMx sometimes occurred within SpnMeg habitat. Within this area, large sections of coarse mixed sediment with boulders and cobbles was seen. Burrowing megafauna was still evident in the areas of softer sediment but the bioturbation was not as deep or dense as areas more suited to *Nephrops*. These coarser sections were dominated by hydroid/bryozoan turf, small amounts of oaten pipes hydroid *T. indivisa* and, a notable amount of the rugose squat lobster under the boulders and cobbles. Occasional edible sea urchin (*Echinus esculentus*) and a few King scallop were seen as was one edible crab.

3.2.3. Once the SpnMeg was no longer present the CMx habitat with a reduced amount of mud in evidence, had a fauna largely comprised of coralline algae and bryozoan crusts with sparse outcrops of foliose hydroid/bryozoan turf including hornwrack *Flustra foliacea* and Plumulariidae, with rare oaten pipes hydroid *T. indivisa*. Very small outcrops of dead man's fingers (*Alcyonium digitatum*) were present and rare edible sea urchin. Rugose squat lobster were present under many of the boulders and cobbles, with small crabs such as *Liocarcinus* also evident. Occasionally a large edible crab was seen and a very occasional King scallop. Small starfish were scattered across the area. Discarded fishing rope debris was also present.

3.2.4. The area of CMx gave way to a mixed region of CMx and SSa. In this area what appeared to be hard ground in places was over-laid with a very coarse mixture of shelly sandy, gravelly pebbly cobble matrix with a few boulders in places. Mobile sand of varying depths provided a thin covering over the hard ground and in places, extensive patches of rippled sand occurred, before returning to coarse mixed sediment. Where this occurred further offshore the sand became coarser and thicker in nature, forming coarse sand waves with large shell debris within the recesses. The coarse ground had sparse hydroid/bryozoan turf with a few starfish, small amounts of the soft coral *A. digitatum*, rare oaten pipes hydroid and *Urticina* anemones. Boulders were particularly covered in dense hydroid/bryozoan turf, with large clusters of hornwrack. Rugose squat lobster were regularly seen across the area under the coarser sediment. King scallop were often seen as well as the occasional edible crab. In some sand patches tubes of the sand mason worm (*Lanice conchilega*) became evident, mixed with smaller tubes believed to be of the family Oweniidae. In the deeper coarser sand waves, sand eels were present.

3.2.5. In the CMx/SSA habitat small colonies of serpulid worms thought to be either *Salmacina dysteri* or *Filograna implexa* were noted (Plate 2). Video data were not sufficient to confirm species identity in this instance. It may be that the species is in fact *S. dysteri* but it would require sampling and closer taxonomical analysis to confirm this identity. These clusters were only present within a short area of the transect suggesting a sparse distribution.

Plate 2 Serpulid colonies (note stills image taken from a transect to the west of the video track reported here but in similar habitat and used because of the clarity of the image).

3.2.6. Across the inshore area rippled sand, with a few holes, was encountered with a thin biofilm in evidence across the area. Only a few flat fish were evident here. This area of inshore sand, gradually gave way to a bedrock and boulder reef. Small outcrops of rock with the brown alga *Saccharina latissima* and long foliose red and brown algal fronds were seen. Where the reef became more established, only foliose red algal fronds remained (i.e. *?Delesseria sanguinea*, sea beech), before the algal cover disappeared completely. The area then became a bedrock, boulder and cobble reef, undulating and rising to around 1-2.0m approx. in height at its greatest point. A cobble, pebble and gravelly sand matrix was evident within the recesses in places. There were small areas where a thin film of sediment was evident on the hard rock surfaces.

3.2.7. The bedrock and boulder reef was densely covered by a crust of what is believed to be a brown alga, with coralline algae and bryozoan crusts also strongly present. *Spirobranchus* worm tubes were clearly visible. The edible urchin *E. esculentus* was very common across the area, along with a frequent presence of the soft coral *A. digitatum*. Small starfish recorded as Asteroidea but probably the common starfish *A. rubens* were often seen. Sun star were very frequent here and the edible crab was noted as occasional.

3.2.8. The area of reef gave way to coarse rippled sand which gradually became finer closer inshore with a few holes. A few starfish are scattered across the area along with large pagurid crabs, flat fish and gadoid fish in places. One monkfish *Lophius piscatorius* was seen. In the coarser sand, sand eel were more apparent.

3.2 Features of conservation interest

3.2.1. The extensive presence of the biotope SS.SMu.CFiMu.SpnMeg Seapens and burrowing megafauna in circalittoral fine mud along the proposed cable corridor indicated the presence of the PMF burrowed mud across the area survey. This habitat is also captured by the Scottish biodiversity list (under Scotlands Biodiversity strategy) as 'Mud habitats in deep water'.

3.2.2. In the inshore area the rock biotope CR.MCR.EcCr.FaAlCr.Pom Faunal and algal crusts with *Pomatoceros triqueter* and sparse *Alcyonium digitatum* on exposed to moderately wave-exposed circalittoral rock was encountered and is illustrative of the Annex I (Habitats Directive) Reef. This was found over a distance of approximately 1.1 km.

3.2.3. The presence of what appears to be the burrowing anemone *Arachnanthus sarsi* was also noted. This species is on the Scottish biodiversity list and has been recommended as a PMF.

3.2.4. The deep water coral *Lophelia pertusa*, which has previously been recorded to the east in the area of the Moray Firth called the Southern Trench (Hall-Spencer & Stehfest, 2009), was not observed at any point from the video survey of the proposed cable route.

3.3 Sediment type (PSD)

3.3.1. Full results of the particle size distribution analyses of the grab samples are presented in Appendix IV and are summarised in Figure 3.3 (Chart Appendix). A total of five Folk sediment classifications (Folk, 1954) were identified following laboratory analysis as summarised in Table 3.3 below.

Folk classification	Number of stations (n=10) Sediment description	Representative seabed photograph
Gravelly sand gS	1 station (KPA45) % gravel = 18.93 % sand = 79.26 % mud = 1.82 Poorly sorted	
Slightly gravelly sand (g)S	2 stations (KPA50, KPA58) Mean % gravel = 1.19 Mean % sand = 94.99 Mean % mud = 3.82 Moderately sorted	
Slightly gravelly muddy sand (g)mS	5 stations (KPB12, KPA37, KPA30, KPA21, KPA17) Mean % gravel = 0.04 Mean % sand = 72.75 Mean % mud = 27.21 Poorly sorted	

Table 3.3	Summary of t	he grab sample	sediment analyses
-----------	--------------	----------------	-------------------

Modified Transmission Infrastructure for Telford, Stevenson and MacColl Wind Farms

Folk classification	Number of stations (n=10) Sediment description	Representative seabed photograph
Muddy sand mS	1 station (KPA12) % gravel = 0 % sand = 76.91 % mud = 23.09 Poorly sorted	
Muddy sandy gravel msG	1 station (KPB7) % gravel = 56.62 % sand = 35.37 % mud = 8.02 Very poorly sorted	

3.3.2. The grab sample data are consistent with the expected distribution, as indicated by both the predicted habitats (Figure 1.2 – Chart Appendix) and the seabed video surveillance, with coarser sediments at the start and end of the proposed cable route and muddier sediments in the midsection. The dominant sediment fractions were very fine to medium grade sands (particles of diameter between 63-500 μ m). With two exceptions the gravel component was considerably less than 2%. Station KPB7, closest to shore, had the largest percentage of gravel of any of the samples at 56.62%. Video evidence confirmed the coarser stonier nature of the inshore sediments. The sample from the offshore Station KPA45 had 18.93% gravel, though as the grab photo illustrates this was shell gravel (Appendix II).

3.3.3. Levels of mud particles (<63 µm diameter) ranged from 1.82% at station KPA45 in the offshore deep circalittoral coarse sediments to 43.14% at station KPA30 in the midsection of the proposed cable route. The five muddiest stations (slightly gravelly muddy sand) occurred consecutively over a distance of just over 25 km from the offshore area to within about 10 km of the coast (Table 3.4, Figure 3.3 – Chart Appendix). Video data showed that this, more silty sediment supported burrowing fauna as evidenced by the density of burrows and mounds. Two species of seapens, *Pennatula phosphorea* and *Virgularia mirabilis*, also typified the sediments in this area. These observations accord with historic findings of burrowed muddy seabed habitats with sea pens as illustrated in Figure 1.4 (Chart Appendix). The biotope classification SS.SMu.CFiMu.SpnMeg has been attributed to this sediment habitat (which describes sea pens and burrowing megafauna in circalittoral fine mud) and is clearly supported by the increased mud fraction found. It is a component biotope of the "burrowed mud" Scottish PMF and therefore represents a habitat of potential conservation importance in Scotland.

3.4 Sediment chemistry

3.4.1. Full results of the sediment chemistry analyses are presented in Appendix 5. A summary of the results are provided in Tables 3.4 to 3.6.

Moray Offshore Renewables Limited

Modified Transmission Infrastructure for Telford, Stevenson and MacColl Wind Farms

•											
Determinand	Units	KPA58 (52.0m)	KPA50 (51.2m)	KPA45 (54.8m)	KPA37 (70.0m)	KPA30 (87.1m)	KPA21 (75.1m)	KPA17 (84.3m)	KPA12 (94.0m)	KPB12 (37.4m)	KP (20.
Mercury : Dry Wt	mg/kg	0.00352	0.00381	0.00538	0.0113	0.0134	0.0113	0.0165	0.0184	0.0235	、 <0.0>
Aluminium, HF Digest : Dry Wt	mg/kg	16700	19200	6770	21400	29800	31000	13700	15600	37300	1960
Barium, HF Digest : Dry Wt	mg/kg	259	257	115	308	320	347	339	419	436	270
Arsenic, HF Digest : Dry Wt	mg/kg	5.46	3.2	24.6	4.07	4.9	4.75	4.91	5.94	11.2	4.87
Cadmium, HF Digest : Dry Wt	mg/kg	0.056	0.042	0.038	0.171	0.141	0.14	0.132	0.148	0.151	0.07
Chromium, HF Digest : Dry Wt	mg/kg	25	12.5	10.2	67.1	70.7	53.6	46.8	58.8	52.7	11.4
Copper, HF Digest : Dry Wt	mg/kg	3.51	2.52	2.05	6.36	6.01	6.28	6.67	7.4	10.6	2.04
Lead, HF Digest : Dry Wt	mg/kg	9.62	7.89	8.86	9.04	9.99	10.1	10.8	12.2	17.3	6.65
Nickel, HF Digest : Dry Wt	mg/kg	4.19	3.7	3.64	14.6	15.6	14.7	15.5	17.2	19.7	3.3
Tin, HF Digest : Dry Wt	mg/kg	0.806	0.553	<0.5	1.2	1.25	1.28	1.24	1.38	1.93	0.74
Zinc : HF Digest : Dry Wt	mg/kg	10.2	8.4	10	26.5	28.7	28.5	31.3	33.4	48.2	13.6
Dibutyl Tin : Dry Wt as Cation	ng/kg	<4	7	<4	<4	<5	<4	<4	<4	<4	7 2
Dioctyl Tin : Dry Wt as Cation	ng/kg	<4	4>	<4	<4	<5	<4	<4	<4	<4	7 >
Diphenyl Tin : Dry Wt as Cation	ga/gu	<3	<3	<2	⊲3	3	<3	<3	3	3	<2
Tetrabutyl Tin : Dry Wt as Cation	ga/gu	<3	<3	<2	⊲3	3	<3	<3	⊲3	3	<2
Tributyl Tin : Dry Wt as Cation	ng/kg	<4	4>	<4	<4	<5	<4	<4	<4	<4	7 2
Triphenyl Tin : Dry Wt as Cation	ng/kg	<3	<3	<2	⊲3	3	<3	<3	<3	3	<2
Hydrocarbons : Total : Dry Wt as Ekofisk	mg/kg	0.502	0.436	0.801	1.63	2.63	1.52	2.36	1.87	3.21	0.14

Summary results of the sediment chemistry analyses for metals, organotins and total hydrocarbons Table 3.4

Below all guideline values Above Cefas AL1 (below OSPAR) Above Canadian TEL

LOD below guideline value

Technical Appendix 4.1 A Subtidal Ecology Characterisation

Metals

3.4.2. All results were below OSPAR, Cefas and Canadian action levels with the exception of Arsenic and Chromium (Appendix 5; Table 3.4).

3.4.3. The concentration of Arsenic was above the Cefas revised AL1 (20 mg/kg) and the Canadian TEL (7.24 mg/kg) in the sample taken from Site KPA45 (24.6 mg/kg) and above the Canadian TEL in the sample taken from Site KPB12 (11.2 mg/kg). However, all results for the concentration of Arsenic were below the OSPAR Background Assessment Concentration (BAC) of 25 mg/kg.

3.4.4. The concentration of Chromium was above the Cefas revised AL1 (50 mg/kg) and the Canadian TEL (52.3 mg/kg) in the samples taken from Sites KPA37 (67.1 mg/kg), KPA 30 (70.7 mg/kg), KPA21 (53.6 mg/kg), KPA12 (58.8 mg/kg) and KPB12 (52.7 mg/kg). However, all results for the concentration of Chromium were below the OSPAR Background Assessment Concentration (BAC) of 81 mg/kg.

Organotins

3.4.5. The Cefas AL1 for Tributyltin (TBT, DBT and MBT) is 100 μ g/kg. The concentrations of organotins for all samples were below the limit of detection (LOD) available from the analyses. Marine Scotland requires a LOD of 10 μ g/kg of TBT (Appendix 5; Table 3.4). The LOD achieved for TBT by the analytical laboratory used to assess the samples was <4 μ g/kg.

3.4.6. OSPAR (2009) states that the, 'large majority of the [TBT] concentrations fall into assessment classes B and C, and would not be expected to affect the reproductive capability of sensitive gastropod species'. Class C concentrations of TBT in sediments are in the range 2 μ g/kg-<50 μ g/kg and, therefore, the concentrations found from the proposed cable route samples are unlikely to present a problem in this respect.

Total Hydrocarbons

3.4.7. The concentration of hydrocarbons was low in all samples, ranging from 0.14 mg/kg at Site KPA7 to 2.63 mg/kg at Site KPA30, well below the revised Cefas AL1 of 100 mg/kg (Appendix 5; Table 3.4).

PAHs

3.4.7. PAH concentrations were low in samples from all sites with the majority below the LOD available from the analyses. All results were below the available guideline values (Appendix 5; Table 3.5).

PCBs

3.4.8. PCB concentrations were below the LOD available from the analyses in all cases. All results were below the available guideline values (Appendix 5; Table 3.6).

Moray Offshore Renewables Limited

Modified Transmission Infrastructure for Telford, Stevenson and MacColl Wind Farms

Table 3.5 Summary results of	f the sedi	ment chem	iistry analy	ses for PAH	ls						
Determinand	Units	KPA58 (52.0m)	KPA50 (51.2m)	KPA45 (54.8m)	KPA37 (70.0m)	KPA30 (87.1m)	KPA21 (75.1m)	KPA17 (84.3m)	KPA12 (94.0m)	KPB12 (37.4m)	KPB7 (20.0m)
Acenaphthene : Dry Wt	ug/kg	<2	<2	<2	<2	2.07	<2	<2	<2	2.34	<2 -2
Acenaphthylene : Dry Wt	ug/kg	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Anthracene : Dry Wt	ug/kg	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Benzo(a)anthracene : Dry Wt	ug/kg	<2	<2	<2	<2	<2	<2	2.39	<2	<2	<2
Benzo(a)pyrene : Dry Wt	ug/kg	<2	<2	<2	2.24	3.3	2.13	3.93	2.74	2.16	<2
Benzo(b)fluoranthene : Dry Wt	ug/kg	<10	<10	<10	<10	<10	<10	10.5	<10	<10	<10
Benzo(e) pyrene : Dry Wt	ug/kg	<5	<5	<5	<5	6.72	<5	7.7	<5	<5	<5
Benzo(ghi)perylene : Dry Wt	ug/kg	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Benzo(j)fluoranthene : Dry Wt	ug/kg	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Benzo(k)fluoranthene : Dry Wt	ug/kg	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Chrysene/Triphenylene: Dry Wt	ug/kg	<3	<3	<3	<3	3.3	<3	4.08	<3	<3	<3
Chrysene : Dry Wt	ug/kg	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
Dibenzo(ah)anthracene: Dry Wt	ug/kg	5	<5	<5	<5	<5	<5	<5	<5	<5	€
Dibenzothiophene : Dry Wt	ug/kg	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Fluoranthene : Dry Wt	ug/kg	<2	<2	<2	2.87	4.29	3.07	6.99	3.96	4.26	<2
Fluorene : Dry Wt	ug/kg	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Indeno(1,2,3-c,d)pyrene: DryWt	ug/kg	<10	<10	<10	<10	10.1	<10	<10	<10	<10	<10
Naphthalene : Dry Wt	ug/kg	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30
Perylene : Dry Wt	ug/kg	<5	<5	<5	<5	<5	<5	9.11	5.33	24.4	7.57
Phenanthrene : Dry Wt	ug/kg	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Pyrene : Dry Wt	ug/kg	∞	<3	<3	<3	3	3	4.77	⊲	3.12	∞

Below all guideline values LOD below guideline values Moray Offshore Renewables Limited

Modified Transmission Infrastructure for Telford, Stevenson and MacColl Wind Farms

Tand U 3: Dry Wt u 2: Dry Wt u 3: Dry Wt u 3: Dry Wt u 3: Dry Wt u 3: Dry Wt u	B/kg B/kg B/kg B/kg B/kg B/kg B/kg	KPA58 (52.0m) <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	KPA50 (51.2m) <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	KPA45 (54.8m)	KPA37 (70.0m) <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	KPA30 (87.1m) <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	KPA21 (75.1m) <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	KPA17 (84.3m) <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	KPA12 (94.0m) <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	KPB12 (37.4m) <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	KPB7 (20.0m) <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
ry Wt u§	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

LOD below guideline values

4 Discussion and Conclusions

4.1 This study has characterised the epibenthic habitats and associated faunal communities within the proposed modified offshore export cable route corridor. These data are used to inform the EIA to be provided in support of the development application.

4.2 A total of 4 biotopes were classified along the proposed offshore export cable route corridor occurring both singly and as twinned mosaics in some instances. The biotopes encountered included one EUNIS Level 3 Main habitat (SS.SSA), one Level 4 Biotope complex (SS.SMx.CMx), one Level 5 Biotope (SpnMeg) and one Level 6 Sub-biotope (FaAlCr.Pom).

4.3 The 'Seapens and burrowing megafauna in circalittoral fine mud', SS.SMu.CFiMu.SpnMeg, biotope dominated across the area and occurred in two variant forms, a typical form with highly conspicuous mounds and burrows and a slightly coarser sediment with lower-lying mounds expression. In the inshore area where the rock biotope CR.MCR.EcCr.FaAlCr.Pom was encountered it was also found in two forms one of which was the sheltered variant noted by Connor *et al.* (2004). Biotopes were mapped and a figure produced to illustrate the distribution of habitats recorded along the proposed cable route.

4.4 A number of the classified biotopes related to potential habitats of nature conservation significance including the following:

- Burrowed mud (recommended priority marine feature); and
- Stony and rocky reefs (EC Habitats Directive Annex I habitat 'Reefs').

4.5 In addition the possible presence of a species also listed as a PMF, *Arachnanthus sarsi* the burrowing anemone which lives in a parchment-like tube was noted. From the available records it appears that the species has not been recorded from the east coast of mainland Scotland previously.

4.6 A total of five Folk sediment classifications (Folk, 1954) were identified from the ten stations sampled for PSA. These included gravelly sand, slightly gravelly sand, slightly gravelly muddy sand, muddy sand and muddy sandy gravel. The dominant sediment fractions were very fine to medium grade sands and the five muddiest stations occurred in the area where the sea pen communities were recorded.

4.7 All sediment chemistry results for metals were below the guideline OSPAR, Cefas and Canadian values with the exception of Arsenic and Chromium. For these two determinands levels at some stations breached both Cefas AL1 and Canadian TEL guideline concentrations but in all cases were below the corresponding OSPAR guideline value. The concentrations of organotins for all samples were below the limit of detection (LOD) available from the analyses. The LOD achieved by the analytical laboratory was better than that required by Marine Scotland for the analysis of TBT. Furthermore in accordance with OSPAR (2009) the concentrations of TBT in sediments analysed from the modified export cable route corridor would be not be expected to affect the reproductive capability of any sensitive gastropod species and hence were considered unlikely to present a problem in this respect. The concentration of total hydrocarbons was low in all samples and well below the revised Cefas AL1. The concentration of PAHs and PCBs were below the LOD in most instances and below the available guideline values in all cases.

5 References

ADAMS, J.A. AND MARTIN, J.H.A. 1986. The hydrography and plankton of the Moray Firth. *Proceedings of the Royal Society of Edinburgh*, **91B**, 37-56.

BEATRICE OFFSHORE WIND LTD (BOWL) 2012. Beatrice offshore wind farm Environmental Statement

BEATRICE OFFSHORE WIND LTD (BOWL) 2013. Beatrice offshore wind farm Environmental Statement Addendum

CALLAWAY, R., ALSVÅGB, J., DE BOOIS, I., COTTER, J., FORD, A., HINZ, H., JENNINGS, S., KRÖNCKE, I., LANCASTER, J., PIET, G., PRINCE, P. & EHRICH, S. (2002). Diversity and community structure of epibenthic invertebrates and fish in the North Sea. – *ICES Journal of Marine Science*, **59**, 1199–1214.

CANADIAN COUNCIL OF MINISTERS OF THE ENVIRONMENT (CCME). 2001. Canadian sediment quality guidelines for the protection of aquatic life: Introduction. Updated. In: Canadian environmental quality guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg.

CEFAS (2003). The Use Of Action Levels in The Assessment of Dredged Material Placement at Sea and in Estuarine Areas under FEPA (II), Defra Project Code AE0258.

CONNOR, D. W., ALLEN, J. H., GOLDING, N., HOWELL, K. L., LIEBERKNECHT, L. M., NORTHEN, K. O., & REKER, J. B. (2004). The marine habitat classification for Britain and Ireland version 04.05. *Joint Nature Conservation Committee Report*, Peterborough, UK.

DTI (2004). Strategic Environmental Assessment of parts of the northern and central North Sea to the east of the Scottish mainland, Orkney and Shetland. SEA 5 Offshore Oil and Gas Licensing, May, 2004.

ELEFTHERIOU, A., BASFORD, D., & MOORE, D.C. (2004). *Synthesis of information on the benthos of area SEA 5*. Report for the Department of Trade and Industry.

FUGRO EMU LIMITED (2014). Moray Firth R3 Offshore Wind Farm Specifications for the conduct of intertidal and subtidal benthic ecological surveys of the proposed export cable. Report to Moray Offshore Renewables Ltd. Dated May 2014.

GREATHEAD, C.F., DONNAN, D.W., MAIR, J.M. & SAUNDERS, G.R., (2007). The sea pens *Virgularia mirabilis, Pennatula phosphorea* and *Funiculina quadrangularis*: distribution and conservation issues in Scottish waters. *Journal of the Marine Biological Association*, **87**, 1095-1103.

HALL-SPENCER, J.M. AND STEHFEST, K.M. 2009. Assessment of Lophelia pertusa reefs in the OSPAR area.

HOLMES R., BULAT J., HENNI P., HOLT J., JAMES C., KENYON N., LESLIE A., LONG D., MUSSON R., PEARSON S., STEWART H. (2004). DTI Strategic Environmental Assessment Area 5 (SEA5): Seabed and superficial geology and processes. *British Geological Survey Report CR/04/064N.*

IRVING, R.A. 1996. Chapter 4.2. Estuaries. *In: Coasts and seas of the United Kingdom. Region 3 Northeast Scotland: Cape Wrath to St. Cyrus*, ed. by J.H. Barne, C.F. Robson, S.S. Kaznowska, J.P. Doody &

N.C. Davidson, 65-68. Peterborough, Joint Nature Conservation Committee. (Coastal Directories Series).

IRVING, R. (2009). The identification of the main characteristics of stony reef habitats under the Habitats Directive. Summary report of an inter-agency workshop 26-27 March 2008. *JNCC Report* No. 432

JENNINGS, S., LANCASTER, J.E., WOOLMER, A., COTTER, A.J. (1999). Distribution, diversity and abundance of epibenthic fauna in the North Sea. *J Mar Biol Assoc UK* 79:385–399

KRÖNCKE, I. 2006. Structure and function of macrofaunal communities influenced by hydrodynamically controlled food availability in the Wadden Sea, the open North Sea, and the deep-sea: a synopsis. *Senckenbergiana Maritima*, 36(2), 123–164.

MARINE SCOTLAND (2012). Overview of additional MPA search locations. Online available at: www.scotland.gov.uk/Resource/0038/00389527.doc [accessed 5.6.2014]

MORAY OFFSHORE RENEWABLES LTD. (MORL (2012). Moray Round 3 Offshore Wind Farms Telford, Stenson & MacColl. Environmental Statement.

OSPAR (2009). CEMP assessment report: 2008/2009 Assessment of trends and concentrations of selected hazardous substances in sediments and biota. *Monitoring and Assessment Series*. Publication Number: 390/2009. ISBN 978-1-906840-30-3

REISS, H., DEGRAER, S., DUINEVELD, G. C. A., KRÖNCKE, I., ALDRIDGE, J., CRAEYMEERSCH, J., EGGLETON, J. D., HILLEWAERT, H., LAVALEYE, M. S. S., MOLL, A., POHLMANN, T., RACHOR, E., ROBERTSON, M., VANDEN BERGHE, E., VAN HOEY, G., AND REES, H. L. 2009. Spatial patterns of infauna, epifauna, and demersal fish communities in the North Sea. *ICES Journal of Marine Science*, **67**, 278–293.

UK NMP (National Monitoring Programme), Scottish Regional Report 1994. Available online at: www.scotland.gov.uk/Uploads/Documents/ScotRegionalReport.pdf

WARE & KENNY (2011). Guidelines for the conduct of benthic studies at aggregate dredging sites 2nd edition. Marine aggregate levy sustainability fund, 80pp.

WIEKING, G. & KRÖNCKE, I. (2005). Is benthic trophic structure affected by food quality? The Dogger Bank example. - *Marine Biology*, 146 (2), 387-400.

WILSON, J.B. (1979). The distribution of the coral *Lophelia pertusa* in the north-east Atlantic. *Journal of the Marine Biological Association of the UK*. Vol. 59, 149-164.

Modified Transmission Infrastructure for Telford, Stevenson and MacColl Wind Farms

Appendix 1 – Survey logs

Appendix I Grab Log Moray Cable Route 2014 J/3/03/2610 (1 Sheet)
--

	Consolicitoris Farma		None	None	Echinocardium cordatum, Liocarcinus	holsatus	None	None	None	None		Lanice sp. tubes	Hydroid	None	Plumularidae	None	None
Anthropogenic features		derived material, other)	None	None		None	None	None	None	None		None	None	None	None	None	None
Sediment anoxia (includes:	None streaks natches	layers, depth of layer)	None	None		None	None	None	Patches	Layer		None	Patches	None	None	None	None
Sediment features	(includes - burrows	tubes, casts, smell)	None	Tubes		Tubes	Tubes	Tubes	None	Tubes		Tubes	None	Tubes	None	Tubes	None
	In-situ sediment	description	Slightly shelly sand	Sandy mud		Sandy mud	Slightly gravelly, shelly sand	(Shell hash)	Silty shelly sand	Silty sand	Silty, gravelly, shelly sand	Sandy mud	Sandy mud				
	Photograph of	sample?	Yes	Yes		Yes	Yes	No	Yes	Yes		Yes	Yes	Yes	Yes	Yes	No
	DCA		Yes	Yes		Yes	Yes	No	Yes	Yes		Yes	Yes	Yes	Yes	Yes	No
	Hydrocarbons	Sample	3	3		3	1	2	3	3		3	3	3	3	1	2
	Metals	Sample	-	-		-	-		-	-		1	-	-	-	1	
	Sample	Size	1/2	Full		Full	1/2	3/4	Full	2/3		Full	2/3	3/4	3/4	1/2	3/4
S84 730 N	204 7 20 IN	Northings	6395296.0	6404741.0		6409510.0	6413497.0	6413507.0	6422475.0	6429477.0		6437467.0	6442465.0	6450451.6	6398324.0	6402541.0	6402533.0
UTIM MC		Eastings	515861.0	519091.8		520622.7	520421.9	520421.6	519972.5	519624.2		519214.3	518964.3	518558.2	523024.3	520345.4	520349.9
	Depth (m	BCD)	19.4	95.0		85.6	76.6	76.1	88.7	71.4		55.8	52.0	52.0	49.1	87.4	87.4
Grab	Loge boot	No.	9	2		4	4	4	2	2		2	-	-	9	5	5
	Date		24/05/14	24/05/14		24/05/14	24/05/14	24/05/14	24/05/14	24/05/14		24/05/14	24/05/14	24/05/14	24/05/14	24/05/14	24/05/14
	Sito No	216100	KPA02	KPA12		KPA17	KPA21	KPA21	KPA30	KPA37		KPA45	KPA50	KPA58	KPB07	KPB12	KPB12

Appendix I Grab Quality Log Moray Cable Route 2014 J/3/03/2610

Size of Size of KPA00. Successful sample (Y/N) Size of sample Size of sample N Attempts sample collected (Y/N) In first attempt was water only, the second attempt had a pebble in the grab jaw and the third attempt was a scraping N/A N/A KPA07 3 N Trist attempt was water only, the second attempt had a pebble in the grab jaw and the third attempt was a scraping N/A N/A KPA03 3 N First attempt was a scraping, attempt was washed out 2/3 1/A 17 KPA20 1 N Trist attempt was a scraping, attempt was washed out 2/3 1/A 17 KPA30 1 N The attempt had a coble in the grab jaw. 2/3 1/A 17	(1 Sheet)					
Site No. Attempts sample collected Brief description of problems with sample sample KPA00 3 N The first attempt was water only, the second attempt had a pebble in the grab jaw and the third attempt was a scraping. NUA The first attempt was water only, the second attempt had a pebble in the grab jaw. NUA NUA<			Successful		Size of	
(Y/N) retained RPAD7 3 N The first attempt was valer only, the second attempt had a pebble in the grab jaw and the third attempt was a scraping N/A N KPAD3 3 N First attempt was valer only, the second attempt had a pebble in the grab jaw N/A N/A N/A KPAD3 3 N First attempt was valer only, the second attempt had a pebble in the grab jaw N/A N/A N/A KPAD3 3 Y First attempt was valer only was washed out 2/3 N/A The attempt had a cobie in the grab jaw 2/3 N/A 1/A KPB04 1 N The attempt had a cobie in the grab jaw 2/3 1/A 1/A 1/A	Site No.	Attempts	sample collected	Brief description of problems with sample	sample	
KPA07 3 N The first attempt was water only, the second attempt had a pebble in the grab jaw and the third attempt was a suraping. N/A N KPA33 3 N First attempt was a suraping. N/A 17 N/A 17 KPA33 3 N First attempt was a suraping. Sand 3 had a pebble in the grab jaw N/A 17 N/A 17 KPB40 1 N The attempt had a cobie in the grab jaw N/A 17 N/A 17			(N/A)		retained	
KPA23 3 N First attempt was ascraing, attempts 2 and 3 had a pebble in the grab jaw. IVA TN KPA20 2 Y First attempt had a shell in the grap jaw.sample was washed out KPB04 2/3 2/3 1/3	KPA07	3	N	The first attempt was water only, the second attempt had a pebble in the grab jaw and the third attempt was a scraping	N/A	
KPA50 2 Y First attempt had a shell in the grab jaw, sample was washed out 2/3 2/3 KPB04 1 N The attempt had a cobble in the grab jaw N/A	KPA23	°	z	First attempt was a scraping, attempts 2 and 3 had a pebble in the grab jaw	N/A	亡
KPB04 1 N The attempt had a cobble in the grab jaw N/A	KPA50	2	Y	First attempt had a shell in the grab jaw, sample was washed out	2/3	
	KPB04	1	N	The attempt had a cobble in the grab jaw	N/A	

third sample was taken 100m south of the original site in an effort to acquire a successful sample

Additional Notes on Quality of Retained Samples

Appendix I Static Image Log Moray Cable Route J/3/03/2610 (12 Sheets)

Stille DICT No	Date	UTM WGS8	4 Z30N					
SUIIS PICT NO.	Date	Eastings	Northings					
A116	18/05/2014	516716.6	6398178.0					
A117	18/05/2014	516706.0	6398167.4					
A118	18/05/2014	516679.7	6398142.2					
A119	18/05/2014	516669.5	6398128.0					
A120	18/05/2014	516648.8	6398100.3					
A121	18/05/2014	516628.5	6398072.6					
A122	18/05/2014	516604.6	6398016.8					
A123	18/05/2014	516584.0	6397962.2					
A124	18/05/2014	516570.4	6397881.1					
A125	18/05/2014	516569.1	6397853.6					
A126	18/05/2014	516562.7	6397834.4					
A127	18/05/2014	516559.4	6397782.9					
A128	18/05/2014	516557.5	6397769.4					
A129	18/05/2014	516552.0	6397681.2					
A130 A121	18/05/2014	510543.7	6397639.0					
A131 A122	18/05/2014	516530.0	620756/ 1					
A132 A122	18/05/2014	516530.4	6207550.2					
A133 A124	18/05/2014	516405 4	6207504.7					
A134 A135	18/05/2014	516/88 5	6307/78.6					
Δ136	18/05/2014	516482.2	6397466 3					
A137	18/05/2014	516460.7	6397397 0					
A138	18/05/2014	516430.9	6397275 7					
A139	18/05/2014	516432.4	6397213.6					
A140	18/05/2014	516440.5	6397147.1					
A141	18/05/2014	516467.2	6396974.3					
A142	18/05/2014	516483.1	6396921.9					
A143	18/05/2014	516498.7	6396886.4					
A144	18/05/2014	516508.2	6396865.7					
A145	18/05/2014	516465.5	6396793.2					
A146	18/05/2014	516411.0	6396759.3					
A148	18/05/2014	516360.4	6396678.1					
A149	18/05/2014	516370.8	6396494.4					
A150	18/05/2014	516319.1	6396459.2					
A151	18/05/2014	516289.1	6396454.5					
A152	18/05/2014	516269.4	6396458.6					
A153	18/05/2014	-	-					
A154	18/05/2014	-	-					
A155	18/05/2014	-	-					
A156	18/05/2014	516070.0	6396233.9					
A157	18/05/2014	516069.0	6396224.9					
A158	18/05/2014	516070.2	6396206.2					
A159	18/05/2014	516044.9	6396122.1					
A160	18/05/2014	516015.0	6396035.0					
A161	18/05/2014	516013.6	6396024.0					
A162	18/05/2014	516003.8	6395919.8					
A163	18/05/2014	515999.3	6395889.5					
A165	10/05/2014	515001 4	6205020 0					
A100 A166	18/05/2014	515000.0	6305016 0					
A167	18/05/2014	515026.1	6305610.9					
A168	18/05/2014	515930.1	6395/62 0					
A169	18/05/2014	515874 1	6395433.9					
A172	18/05/2014	515854.0	6395344 9					
A173	18/05/2014	515869.3	6395217.5					
A174	18/05/2014	515714.3	6394807.1					
A175	18/05/2014	515674 9	6394702.0					
A176	18/05/2014	515632.9	6394549.7					
A177	18/05/2014	515622.4	6394542.9					
A178	18/05/2014	515513.8	6394200.6					
A179	18/05/2014	515508.9	6394191.4					
A180	18/05/2014	515482.4	6394134.9					
A183	18/05/2014	522713.1	6399106.2					
A184	18/05/2014	522702.9	6399127.0					
A185	18/05/2014	522691.1	6399152.1					
A186	18/05/2014	522671.9	6399178.6					
A187	18/05/2014	522645.3	6399210.5					
A188	18/05/2014	522638.1	6399220.8					
A189	18/05/2014	522567.0	6399285.6					
A190	18/05/2014	522549.8	6399299.4					
A191	18/05/2014	522516.6	6399336.5					
A192	18/05/2014	522494.5	6399363.0					
71172								
	Data	UTM WGS8	4 Z30N					
----------------	------------	----------	------------	--	--	--	--	--
SUIIS PICT NO.	Date	Eastings	Northings					
A194	18/05/2014	522305.3	6399510.0					
A195	18/05/2014	522214.1	6399563.9					
A196	18/05/2014	521900.0	6399767.8					
A197	18/05/2014	521893.9	6399783.8					
A198	18/05/2014	521883.0	6400528.2					
A199	18/05/2014	521754.6	6400625.4					
A200	18/05/2014	521673.2	6400703.6					
A201	18/05/2014	521454.3	6400888.7					
A202	18/05/2014	521433.2	6400908.3					
A203	18/05/2014	521404.9	6400934.0					
A204	18/05/2014	521359.9	6400970.6					
A205	18/05/2014	521203.1	6401147.5					
A209	18/05/2014	523011.3	6398362.6					
A210	18/05/2014	523002.1	6398370.1					
A211	18/05/2014	522992.7	6398376.5					
A212	18/05/2014	522973.3	6398390.8					
A213	18/05/2014	522963.4	6398401.8					
A214	18/05/2014	522893.3	6398443.2					
A215	18/05/2014	522880.9	6398449.3					
A216	18/05/2014	522870.6	6398453.8					
A21/	18/05/2014	522860.3	6398455.8					
A218	18/05/2014	522844.3	6398480.6					
A219	18/05/2014	522834.0	6398522.6					
A220	18/05/2014	522822.7	6398533.6					
A221	18/05/2014	522823.1	6398554.1					
A222	18/05/2014	522832.9	6398591.4					
A223	18/05/2014	522836.0	6398601.9					
A224	18/05/2014	522843.7	6398617.5					
A225	18/05/2014	522861.5	6398637.3					
A226	18/05/2014	522877.5	6398647.9					
A227	18/05/2014	522901.1	6398661.9					
A228	18/05/2014	522940.7	6398737.1					
A229	18/05/2014	522920.4	6398789.3					
A230	18/05/2014	522885.8	6398842.3					
A231	18/05/2014	522862.5	6398864.8					
A232	18/05/2014	522783.7	6398916.1					
A233	18/05/2014	522/16.5	6398950.7					
A234	18/05/2014	522689.9	6398964.9					
A235	18/05/2014	522673.8	6398972.6					
A230	18/05/2014	522628.9	6398993.3					
A237	18/05/2014	522551.9	6399037.7					
A238	18/05/2014	522523.2	6399052.0					
A240	18/05/2014	524038.3	6393841.7					
A241	18/05/2014	524010.0	6393874.3					
AZ4Z	18/05/2014	524007.8	6393880.9					
A243	10/03/2014	524564.9	4205049.2					
A244	10/03/2014	524556.9	6206044.0					
A240	10/03/2014	524409.0	6390044.9					
A240	18/05/2014	52//610	63060002.7					
A247	18/05/2014	524401.0	6306101 1					
A240	18/05/2014	524400.2	6306101.1					
Δ250	18/05/2014	524440.9	6206150 1					
Δ251	18/05/2014	524419.0	6390100.1					
A252	18/05/2014	524300.7	6306233.3					
A253	18/05/2014	524330.0	6396608.0					
A254	18/05/2014	524134.4	6396640.2					
A255	18/05/2014	524114.2	6396659 1					
A256	18/05/2014	5240924	6396688 7					
A257	18/05/2014	524086.8	6396728.2					
A258	18/05/2014	524084 3	6396746.8					
A259	18/05/2014	5239571	6397172 3					
A260	18/05/2014	523637.0	6397520.2					
A261	18/05/2014	523612.0	6397538.8					
A262	18/05/2014	523523 7	6397596.6					
A263	18/05/2014	523517.7	6397601.1					
A264	18/05/2014	523387.0	6397750 1					
A265	18/05/2014	523377.4	6397766.1					
A266	18/05/2014	523366.0	6397794.4					
A267	18/05/2014	523167.0	6398233.5					
A269	18/05/2014	525657.8	6394139.3					
A270	18/05/2014	525649.5	6394151.4					
A271	18/05/2014	525643.0	6394160.9					
A272	18/05/2014	525636.2	6394170.2					
A273	18/05/2014	525629.4	6394178.8					
A274	18/05/2014	525623.1	6394187.1					
A275	18/05/2014	525605.8	6394204.4					

Stills DICT No.	Data	UTM WGS8	4 Z30N					
SUIIS PICT NO.	Date	Eastings	Northings					
A276	18/05/2014	525595.9	6394212.5					
A277	18/05/2014	525586.1	6394219.6					
A278	18/05/2014	525579.2	6394225.4					
A279	18/05/2014	525568.0	6394236.8					
A280	18/05/2014	525562.6	6394244.8					
A281	18/05/2014	525540.3	6394277.2					
A282	18/05/2014	525523.3	6394289.2					
A283	18/05/2014	525508.4	6394299.1					
A284	18/05/2014	525497.2	6394308.5					
A285	18/05/2014	525487.1	6394321.6					
A286	18/05/2014	525445.6	6394371.4					
A287	18/05/2014	525432.2	6394391.1					
A288	18/05/2014	525409.7	6394446.9					
A289	18/05/2014	525406.9	6394456.1					
A290	18/05/2014	525195.4	6394919.1					
A291 A202	18/05/2014	524717.2	6395750.8					
A272 A203	18/05/2014	524000.0	6305820.2					
A273	18/05/2014	524024.7	6305830 5					
R015	19/05/2014	524010.7	6393330.0					
B016	19/05/2014	526200.4	6393338 3					
B017	19/05/2014	526194.6	6393396.2					
B018	19/05/2014	526194.7	6393400.0					
B019	19/05/2014	526177.0	6393434.9					
B020	19/05/2014	526173.6	6393438.7					
B021	19/05/2014	526140.2	6393484.7					
B022	19/05/2014	526091.8	6393578.8					
B023	19/05/2014	526089.6	6393583.6					
B024	19/05/2014	526075.0	6393612.7					
B025	19/05/2014	526073.0	6393617.2					
B026	19/05/2014	526069.3	6393624.5					
B027	19/05/2014	526059.9	6393645.7					
B028	19/05/2014	526053.2	6393667.7					
B029	19/05/2014	526050.0	6393675.1					
B030	19/05/2014	526045.8	6393684.8					
B031	19/05/2014	526040.7	6393694.8					
B032	19/05/2014	526036.8	6393700.5					
BU33	19/05/2014	526022.0	6393728.3					
BU34	19/05/2014	526017.8	6393740.1					
B035 B036	19/05/2014	526011.4	6202701.5					
B030	19/05/2014	525002.0	6303700.2					
B038	19/05/2014	525996.8	6393790.2					
B039	19/05/2014	525991.6	6393824.6					
B040	19/05/2014	525986.4	6393862.8					
B041	19/05/2014	525986.5	6393871.5					
B042	19/05/2014	525985.7	6393880.9					
B043	19/05/2014	525985.4	6393895.3					
B044	19/05/2014	525984.8	6393899.9					
B045	19/05/2014	<u>5259</u> 81.1	6393913.5					
B046	19/05/2014	525975.5	6393930.2					
B047	19/05/2014	525973.5	6393947.1					
B048	19/05/2014	525970.3	6393969.1					
B049	19/05/2014	525963.9	6393984.3					
B050	19/05/2014	525959.8	6393989.9					
B051	19/05/2014	525957.8	6393992.9					
8052	19/05/2014	525937.3	6394016.5					
B053	19/05/2014	525934.8	6394020.8					
DU54	19/05/2014	525915.1	6394039.4					
B056	19/05/2014	575002 4	6204074.0					
B050	19/05/2014	5250603.4	620/002 1					
B058	19/05/2014	525000.4	6394093.1					
B059	19/05/2014	525843 2	6394107.0					
B060	19/05/2014	525836 3	6394143 4					
B061	19/05/2014	525835.0	6394148.8					
B062	19/05/2014	525821.0	6394169.2					
B063	19/05/2014	525811.2	6394181.4					
B064	19/05/2014	525805.2	6394193.5					
B066	19/05/2014	521252.7	6401104.3					
B067	19/05/2014	521253.7	6401111.4					
B068	19/05/2014	521230.4	6401290.4					
B069	19/05/2014	521228.2	6401296.3					
B070	19/05/2014	521211.4	6401336.4					
B071	19/05/2014	521148.8	6401426.8					
B072	19/05/2014	521113.9	6401474.2					
B0/6	19/05/2014	521036.7	6401593.7					

	Data	UTM WGS8	4 Z30N				
STILLS PICT NO.	Date	Eastings	Northings				
B077	19/05/2014	520929.6	6401693.5				
B078	19/05/2014	520787.6	6401826.6				
B079	19/05/2014	520599.2	6402106.8				
B080	19/05/2014	520438.9	6402308.8				
B000	10/05/2014	520430.7	64020007.0				
D001	19/05/2014	520025.1	6402397.3				
DU02	19/05/2014	519914.3 E10004.1	6403204.7				
BU83	19/05/2014	519906.1	6403217.2				
B084	19/05/2014	519814.4	6403364.7				
B085	19/05/2014	519666.2	6403545.6				
B086	19/05/2014	519491.8	6403771.4				
B087	19/05/2014	519487.7	6403795.4				
B088	19/05/2014	519468.8	6403922.5				
B089	19/05/2014	519357.7	6404174.3				
B090	19/05/2014	519304.6	6404212.2				
B091	19/05/2014	519250.9	6404253.3				
B092	19/05/2014	519168.6	6404359.6				
B093	19/05/2014	519155.9	6404422.1				
B094	19/05/2014	519150.0	6404481.2				
B095	19/05/2014	519149.9	6404491.7				
B096	19/05/2014	519148.0	6404639.8				
B097	19/05/2014	519141 8	6404663 5				
B098	19/05/2014	510112 5	6404770 9				
B099	19/05/2014	510147.0	6/04/47.0				
B100	10/05/2014	510142 4	6/0/000.0				
P100	19/03/2014	51603.4	4200227 4				
D102	19/05/2014	5108/7.0	0398237.4				
B103	19/05/2014	516890.1	6398255.9				
ы104	19/05/2014	516902.1	6398275.3				
B105	19/05/2014	516907.5	6398286.2				
B106	19/05/2014	516917.9	6398309.2				
B107	19/05/2014	516929.4	6398382.1				
B108	19/05/2014	516945.2	6398431.2				
B109	19/05/2014	516986.7	6398500.2				
B110	19/05/2014	517007.1	6398542.1				
B111	19/05/2014	517025.2	6398579.5				
B112	19/05/2014	517045.4	6398609.3				
B113	19/05/2014	517035.2	6398703 7				
B114	19/05/2014	517029.8	6398712.8				
B115	19/05/2014	517042.5	6398787 5				
B116	10/05/2014	517125.0	6308020 5				
D110 D117	10/05/2014	51725.0	6200170.1				
D117 D110	19/05/2014	517210.3	4200100.2				
D110 D110	19/05/2014	517210.2	6400006.0				
B119	19/05/2014	517488.4	6400006.9				
B120	19/05/2014	517508.3	6400078.2				
B121	19/05/2014	517526.8	6400136.2				
B122	19/05/2014	517539.9	6400178.1				
B123	19/05/2014	517557.2	6400265.6				
B124	19/05/2014	517575.7	6400339.2				
B125	19/05/2014	517576.6	6400351.7				
B126	19/05/2014	517578.4	6400365.1				
B127	19/05/2014	517579.9	6400372.9				
B128	19/05/2014	517608.9	6400432.5				
B129	19/05/2014	517658.0	6400572.3				
B130	19/05/2014	517688.0	6400671.7				
B131	19/05/2014	517691.9	6400686.3				
B132	19/05/2014	517695.2	6400695.6				
B133	19/05/2014	517699.4	6400709.1				
B134	19/05/2014	517703 5	6400725 1				
B135	19/05/2014	517716 2	6400784 1				
B136	10/05/2014	517746 0	6/100262 0				
B130	10/05/2014	517010 5	6/01012.9				
P120	10/05/2014	517010.5	6/01012.5				
D137 D140	19/05/2014	517000.0	6401022.9				
D14U	19/05/2014	51/828.2	6401005.0				
B141	19/05/2014	51/849.4	6401085.8				
В142	19/05/2014	51/853.3	6401102.2				
ы143	19/05/2014	51/898.0	6401246.9				
B144	19/05/2014	517902.4	6401263.4				
B145	19/05/2014	517911.4	6401301.9				
B146	19/05/2014	518345.9	6402542.5				
B147	19/05/2014	518351.1	6402559.7				
B148	19/05/2014	518452.1	6402845.2				
B152	19/05/2014	518797.6	6403755.0				
B153	19/05/2014	518807 3	6403768 0				
B154	19/05/2014	518843.4	6403832.0				
B155	19/05/2014	518877 2	6403921 0				
B156	19/05/2014	518885 0	6403044.2				
B157	10/05/2014	510005.0	6/0/010 0				
D107 D150	10/0E/2014	510070.3 E10000 4	6404010.9				
0100	17/03/2014	j jidy32.4	04041/0.0				

	Data	UTM WGS8	4 Z30N					
STILLS PICT NO.	Date	Eastings	Northings					
B159	19/05/2014	518938.7	6404240.2					
B160	19/05/2014	518961.6	6404339.3					
B161	19/05/2014	519057.0	6404580.4					
B162	19/05/2014	519107.1	6404723.8					
B164	19/05/2014	519150.8	6404871.8					
B165	19/05/2014	519147.7	6404893.4					
B166	19/05/2014	519347.7	6405452.8					
B167	19/05/2014	519355.6	6405500.5					
B168	19/05/2014	519699.1	6406621.5					
B169	19/05/2014	519902.8	6407016.9					
B174	19/05/2014	520133.8	6407751.4					
B175	19/05/2014	520138.2	6407765.2					
B176	19/05/2014	520144.4	6407779.2					
B177	19/05/2014	520263.7	6408053.0					
B178	19/05/2014	520348.4	6408438.6					
B179	19/05/2014	520350.2	6408446.0					
B180	19/05/2014	520353.4	6408455.7					
B181	19/05/2014	520448.5	6408697.5					
B182	19/05/2014	520583.3	6409066.6					
B183	19/05/2014	520609.3	6409146.5					
B184	19/05/2014	520672.1	6409372.0					
B185	19/05/2014	520657.7	6409418.0					
B186	19/05/2014	520645.4	6409449.8					
B187	19/05/2014	520626.2	6409534.5					
B188	19/05/2014	520593.1	6409798.6					
B189	19/05/2014	520593.1	6409807.1					
B190	20/05/2014	520575.0	6410129.2					
B191	20/05/2014	520572.3	6410140.4					
B192	20/05/2014	520571.5	6410149.8					
B193	20/05/2014	520570.6	6410159.7					
B194	20/05/2014	520578.4	6410421.2					
B213	20/05/2014	520622.1	6410571.2					
B214	20/05/2014	520614.5	6410783.9					
B215	20/05/2014	520612.2	6410813.7					
B216	20/05/2014	520583.4	6410934.8					
B217	20/05/2014	520567.6	6411003.4					
B218	20/05/2014	520554.4	6411038.6					
B219	20/05/2014	520523.8	6411342.9					
B220	20/05/2014	520523.4	6411776.0					
B221	20/05/2014	520516.1	6412219.5					
B222	20/05/2014	520463.1	6412591.0					
B223	20/05/2014	520458.6	6413133.2					
B224	20/05/2014	520459.1	6413147.0					
B225	20/05/2014	520451.0	6413339.0					
B226	20/05/2014	520452.5	6413361.1					
B228	20/05/2014	520458.1	6413526.3					
B229	20/05/2014	520457.2	6413533.6					
B230	20/05/2014	520418.5	6413646.6					
DZ31	20/05/2014	520411.9	6413722.3					
DZ3Z	20/05/2014	520413.3	6/13/74.2					
B233	20/05/2014	520432.7	6/12075 2					
B235	20/05/2014	520432.3	6414064 7					
B236	20/05/2014	520420.2	6414309 5					
B237	20/05/2014	5204951	6414611 8					
B238	20/05/2014	520481 0	6414689.6					
B239	20/05/2014	520476 1	6414707.4					
B240	20/05/2014	520469.1	6414724.0					
B241	20/05/2014	520462.7	6414766.6					
B242	20/05/2014	520459.2	6414785.0					
B243	20/05/2014	520453.7	6414815.5					
B244	20/05/2014	520452.0	6414833.9					
B245	20/05/2014	520434.4	6414950.1					
B246	20/05/2014	520429.3	6415281.7					
B247	20/05/2014	520418.9	6415363.6					
B248	20/05/2014	520403.3	6415423.6					
B249	20/05/2014	520401.9	6415431.3					
B250	20/05/2014	520400.1	6415452.7					
B251	20/05/2014	520395.7	6415509.4					
B252	20/05/2014	520397.6	6415522.6					
B253	20/05/2014	520402.6	6415548.1					
B254	20/05/2014	520374.5	6415929.5					
B257	20/05/2014	520277.3	6416536.9					
B258	20/05/2014	520240.3	6416749.8					
B259	20/05/2014	520240.8	6416951.5					
B260	20/05/2014	520215.7	641/219.2					
B261	20/05/2014	520215.1	641/228.0					

	Data	UTM WGS8	4 Z30N				
STILLS PICT NO.	Date	Eastings	Northings				
B262	20/05/2014	520200.8	6417283.4				
B265	20/05/2014	520104.3	6419432.6				
B266	20/05/2014	520110 1	6419421.1				
B267	20/05/2014	520112.6	6419254 5				
B268	20/05/2014	520115.7	6419239 7				
B260	20/05/2014	520117.5	6/10230 /				
D207	20/05/2014	520117.3	6410225.0				
DZ70	20/05/2014	520110.9	0419223.0				
BZ/I	20/05/2014	520120.8	6419218.1				
B272	20/05/2014	520122.6	6419209.8				
B273	20/05/2014	520123.8	6419195.7				
B274	20/05/2014	520133.1	6419149.7				
B275	20/05/2014	520131.2	6419130.7				
B276	20/05/2014	520127.1	6419121.4				
B277	20/05/2014	520119.9	6419081.4				
B278	20/05/2014	520120.0	6419077.3				
B279	20/05/2014	520121.3	6419069.0				
B280	20/05/2014	520122.3	6419052.4				
B281	20/05/2014	520127.7	6418999.2				
B282	20/05/2014	520159.3	6418305.0				
B283	20/05/2014	520160 0	6418300 7				
B284	20/05/2014	520159.9	6418292.2				
B285	20/05/2014	520140.0	6418254 4				
B286	20/05/2014	520140.0	6/122/12 5				
B200	20/05/2014	520120.7	6/175/7 0				
D207	20/05/2014	520190.U	6401010 4				
D207	20/05/2014	519920.7	0421913.4				
D29U	20/05/2014	520105.2	04211/9.2				
B291	20/05/2014	520034.2	6421035.0				
B292	20/05/2014	520050.2	6421025.3				
B293	20/05/2014	520042.9	6420016.9				
B294	20/05/2014	520037.9	6419958.5				
D002	20/05/2014	519847.8	6424253.2				
D004	21/05/2014	519628.2	6428446.8				
D005	21/05/2014	519629.1	6428437.5				
D006	21/05/2014	519656.1	6428245.5				
D007	21/05/2014	519685.9	6428107.1				
D008	21/05/2014	519745.4	6427630.9				
D009	21/05/2014	519773 1	6427351.2				
D010	21/05/2014	519805.9	6426954.7				
D010	21/05/2014	510807.0	6/26/34.7				
D011	21/05/2014	51001.1	6426935.2				
D012	21/05/2014	519011.1	6420090.1				
D013	21/05/2014	519813.0	0420838.1				
DU16	21/05/2014	519544.5	6431157.3				
DUT7	21/05/2014	519566.6	6430874.6				
D018	21/05/2014	519591.7	6430541.9				
D019	21/05/2014	519594.3	6430369.0				
D020	21/05/2014	519612.0	6430151.7				
D021	21/05/2014	519612.6	6429936.6				
D022	21/05/2014	519599.4	6429645.0				
D023	21/05/2014	519606.3	6429373.1				
D024	21/05/2014	519634.1	6429136.0				
D025	21/05/2014	519643.0	6429107.9				
D026	21/05/2014	519647.3	6429097.1				
D027	21/05/2014	519651.7	6429084.0				
D028	21/05/2014	519652.3	6429080.9				
D029	21/05/2014	519658.3	6429046.0				
D032	21/05/2014	519402.2	6434346 5				
D033	21/05/2014	519426 2	6434029 7				
D034	21/05/2014	510/26.0	6434024.4				
D035	21/05/2014	510/25 0	6/2/010 7				
D036	21/05/2014	510502.0	6/22100 2				
D030	21/05/2014	519003.9	6/22072 1				
0037	21/05/2014	517400.4 E10404 7	04320/3.1				
D030	21/05/2014	519486./	0432865.1				
D03A	21/05/2014	519493.0	6432588.0				
D040	21/05/2014	519504.8	6432290.7				
D041	21/05/2014	519504.8	6432281.0				
D044	21/05/2014	519240.0	6437552.9				
D045	21/05/2014	519244.6	6437547.0				
D046	21/05/2014	519255.0	6437537.2				
D047	21/05/2014	519274.0	6437517.2				
D048	21/05/2014	519278.6	6437510.1				
D049	21/05/2014	519285.2	6437499.7				
D050	21/05/2014	519301 3	6437488 2				
D051	21/05/2014	519310 3	6437472 7				
D052	21/05/2014	510277 5	6427/17 2				
D053	21/05/2014	510220.0	6/27252 1				
D054	21/05/2014	517320.3	6427255 4				
D055	21/05/2014	517303.3	6/07005 0				
0000	21/03/2014	0.07270.0	043/233.0				

Stills DICT No.	Date	UTM WGS8	4 Z30N				
SUIIS PICT NO.	Date	Eastings	Northings				
D056	21/05/2014	519283.2	6437107.1				
D057	21/05/2014	519280.2	6437097.6				
D058	21/05/2014	519274.2	6437065.3				
D059	21/05/2014	519315.8	6435838.3				
D060	21/05/2014	519309.7	6435711.8				
D061	21/05/2014	519304.8	6435487.0				
D076	21/05/2014	519101.2	6440342.2				
D077	21/05/2014	519106.6	6440306.1				
D078	21/05/2014	519111.3	6440251.3				
D079	21/05/2014	519112.2	6440235.4				
D080	21/05/2014	519111.5	6440218.7				
D081	21/05/2014	519110.1	6440200.8				
D082	21/05/2014	519109.8	6440181.8				
D083	21/05/2014	519109.9	6440153.8				
D084	21/05/2014	519109.8	6440133.0				
D085	21/05/2014	519108.2	6440115.5				
D080	21/05/2014	519095.0	6439977.4				
0007	21/05/2014	519091.4	6420002.0				
0000	21/05/2014	510000.0	6420672 5				
D090	21/05/2014	517090.9	6/130506 1				
D091	21/05/2014	510117 0	6/120260.0				
D092	21/05/2014	519110.2	6439354.9				
D093	21/05/2014	519133.8	6439243 4				
D094	21/05/2014	519132.9	6439229 4				
D095	21/05/2014	519146.8	6438956 9				
D096	21/05/2014	519147.7	6438934.3				
D097	21/05/2014	519148.4	6438907.5				
D098	21/05/2014	519142.2	6438810.7				
D099	21/05/2014	519144.7	6438677.3				
D100	21/05/2014	519146.0	6438668.2				
D101	21/05/2014	519148.5	6438656.8				
D102	21/05/2014	519159.1	6438616.5				
D103	21/05/2014	519186.2	6438544.4				
D104	21/05/2014	519198.1	6438508.2				
D105	21/05/2014	519200.3	6438494.1				
D106	21/05/2014	519196.0	6438247.9				
D107	21/05/2014	519194.6	6438225.9				
D108	21/05/2014	519177.4	6438117.4				
D109	21/05/2014	519173.2	6438096.8				
D110	21/05/2014	519162.8	6438000.2				
D111	21/05/2014	519165.6	643/960.8				
DT12	21/05/2014	519167.9	643/94/.6				
DTT3	21/05/2014	519193.6	643/344.8				
C003	21/05/2014	519080.3	6440402.8				
C004	21/05/2014	519073.4	6440409.4				
C005	21/05/2014	510069.2	6440427.0				
C000	21/05/2014	519066.8	6110101 1				
C007	21/05/2014	519060.0	6440494.1				
C009	21/05/2014	519068.7	6440577.0				
C010	21/05/2014	519061 2	6440662.6				
C011	21/05/2014	519047 5	6441075.5				
C013	21/05/2014	518965.6	6442596.1				
C014	21/05/2014	518963.3	6442611.3				
C015	21/05/2014	518963.9	6442620.2				
C016	21/05/2014	518965.5	6442638.9				
C017	21/05/2014	518964.3	6442661.0				
C018	21/05/2014	518956.0	6442818.7				
C019	21/05/2014	518841.0	6444233.9				
C020	21/05/2014	518836.0	6444241.3				
C021	21/05/2014	518830.4	6444247.0				
C022	21/05/2014	518832.3	6444302.0				
C023	21/05/2014	518824.7	6444323.1				
C024	21/05/2014	518824.6	6444329.3				
0025	21/05/2014	518826.3	6444335.7				
CU26	21/05/2014	518841.3	6444363.6				
CU27	21/05/2014	518844.0	6444569.6				
C020	21/05/2014	518850.3	6444581.8				
029	21/05/2014	510000 /	6444588.8				
C030	21/05/2014	510077 4	6/1/701 0				
C032	21/05/2014	510022.0	6/1/1755 0				
0032	21/05/2014	518800 7	6444700.9				
C034	21/05/2014	518810 8	6445090.6				
C035	21/05/2014	518819.6	6445095 0				
C036	21/05/2014	518829.6	6445145.4				

Stills DICT No.	Data	UTM WGS8	4 Z30N					
SUIIS PICT NO.	Date	Eastings	Northings					
C037	21/05/2014	518790.5	6445434.4					
C038	21/05/2014	518790.6	6445442.0					
C039	21/05/2014	518793.0	6445454.3					
C040	21/05/2014	518794.1	6445462.4					
C045	21/05/2014	518822.3	6445534.2					
C046	21/05/2014	518813.8	6445572.9					
C047	21/05/2014	518793.7	6445606.9					
C048	21/05/2014	518785.6	6445636.6					
C049	21/05/2014	518773.6	6445675.1					
0050	21/05/2014	518759.9	6445772.9					
C051	21/05/2014	518759.9	6445777.3					
C052	21/05/2014	518758 7	6445851.2					
C053	21/05/2014	518767 7	6445971.6					
C054	21/05/2014	518771.8	6445998.0					
C055	21/05/2014	518771.7	6446015.9					
C056	21/05/2014	518778.1	6446138.1					
C057	21/05/2014	510770.1 510770 /	6446152.6					
C059	21/05/2014	510770.4	6446152.0					
0050	21/05/2014	510777.5	6440130.1					
C060	21/05/2014	510704.0	6440104.3					
C061	21/05/2014	510705 7	6446200.4					
0001	21/05/2014	510704 1	6440317.3					
0002	21/05/2014	518780.1	0440323.4					
0064	22/05/2014	518784.2	0440398.8					
0064	22/05/2014	518/42.4	6446554.7					
0065	22/05/2014	518691.0	6446741.7					
C066	22/05/2014	518690.8	6446805.8					
C067	22/05/2014	518683.9	6446823.4					
C068	22/05/2014	518679.9	6446835.9					
C069	22/05/2014	518693.0	6446886.1					
C070	22/05/2014	518698.4	6446985.9					
C071	22/05/2014	518668.6	6447021.8					
C072	22/05/2014	518712.4	6447103.1					
C073	22/05/2014	518743.1	6447135.4					
C074	22/05/2014	518765.5	6447162.5					
C075	22/05/2014	518780.6	6447200.4					
C076	22/05/2014	518786.4	6447258.9					
C077	22/05/2014	518776.6	6447278.6					
C078	22/05/2014	518763.2	6447330.9					
C079	22/05/2014	518742.7	6447391.3					
C080	22/05/2014	518743.4	6447424.1					
C081	22/05/2014	518695.6	6447558.3					
C082	22/05/2014	518670.7	6447765.7					
C083	22/05/2014	518668.3	6447774.7					
C084	22/05/2014	518677.0	6447874.5					
C085	22/05/2014	518681.9	6447903.3					
C086	22/05/2014	518687.2	6447932.0					
C087	22/05/2014	518691.1	6447949.6					
C088	22/05/2014	518723.8	6448140.5					
C089	22/05/2014	518718.5	6448180.8					
C090	22/05/2014	518711.5	6448259.4					
C092	22/05/2014	518651.0	6448610.8					
C093	22/05/2014	518650.2	6448623.1					
C094	22/05/2014	518648.7	6448633.0					
C095	22/05/2014	518642.0	6448725.4					
C096	22/05/2014	518633.0	6448814 2					
C097	22/05/2014	518637 3	6448974 0					
C098	22/05/2014	518637.3	6449037 0					
C099	22/05/2014	518630.7	6449193.6					
C100	22/05/2014	518610.2	6449384 7					
C100	22/05/2014	518606 5	6110520.8					
C102	22/05/2014	518600.0	6//0552.0					
C102	22/03/2014	510000.0	6//002/ 0					
C103	22/03/2014	51057/.0	6440000 7					
C104	22/05/2014	510570.4	6449999.7					
C105	22/05/2014	518572.3	6450037.2					
C107	22/05/2014	518560.3	0450256.9					
C100	22/05/2014	518559.0	0450263.0					
0100	22/05/2014	518558.3	6450269.4					
C109	22/05/2014	518553.8	6450388.6					

Appendix I Video Log Moray Cable Route 2014 J/3/03/2610 (1 Sheet)

, ,						WGS84 UTM Z30N								
Start Sita	End Sito	Dato	Video (V)	Start Time	Start Depth	Start Posi	tion	End Positi	on					
	LIIU SILE	Date	Logsheet No.	(GMT)	(m BCD)	Eastings	Northings	Eastings	Northings					
KPA5	KPA3	18/05/2014	1-3	06:27	39.3	516822.9	6398288.3	516411.0	6396759.3					
KPA3	KPA2	18/05/2014	3-6	18:15	23.4	516439.1	6396863.2	515863.0	6395394.8					
KPA2	KPA0	18/05/2014	7	11:40	19.6	515859.6	6395385.6	515390.5	6393942.7					
KPB8	KPB11	18/05/2014	8-10	14:35	59	522720.9	6399090.3	521132.7	6401332.2					
KPB7	KPB8	18/05/2014	11-13	17:20	49.4	523025.9	6398341.6	522469.4	6399078.3					
KPB4	KPB2	18/05/2014	14-18	19:10	37.9	524649.6	6395791.5	523046.7	6398333.1					
KPB2	KPB0	18/05/2014	19-21	21:59	18.8	525663.9	6394130.6	524616.9	6395839.5					
KPB0	KPB2	19/05/2014	22-23	04:06	5.1	526212.7	6393308.0	525798.8	6394200.5					
KPB10	KPB14	19/05/2014	24-26	06:09	71.3	521248.3	6401081.9	519142.1	6404962.4					
KPA5	KPA8	19/05/2014	27-31	11:40	36.1	516859.0	6398210.1	517794.7	6400989.6					
KPA8	KPA11	19/05/2014	32-33	14:29	56.5	517798.3	6400983.2	518753.4	6403743.4					
KPA10	KPA12	19/05/2014	34-35	17:36	96	518790.8 6403725.5		519125.5	6404833.0					
KPA12	KPA15	19/05/2014	36-37	19:14	94.9	519134.0	6404813.5	520085.2	6407641.5					
KPA15	KPA18	19/05/2014	38-39	21:57	90.7	520055.8	6407585.6	520586.3	6410556.3					
KPA18	KPA21	20/05/2014	40-41	01:22	92.5	520624.6	6410480.4	520468.1	6413559.3					
KPA21	KPA24	20/05/2014	42-43	04:23	76.6	520457.7	6413469.7	520425.7	6416526.3					
KPA24	KPA25	20/05/2014	44	07:31	65.1	520253.3	6416472.5	520065.9	6417568.3					
KPA27	KPA25	20/05/2014	45-47	09:31	64.4	520108.9	6419539.5	520241.4	6417436.2					
KPA30	KPA28/27	20/05/2014	48-49	11:50	90.5	519911.5	6422462.6	520137.6	6419491.7					
KPA33	KPA32	20/05/2014	50	14:50	79.5	519760.5	6425659.1	519845.4	6424715.8					
KPA32	KPA30	20/05/2014	51-52	23:41	81.2	519801.8	6424640.2	519685.9	6428107.1					
KPA36	KPA33	21/05/2014	53	03:24	80.1	519745.4	6427630.9	519868.7	6425488.9					
KPA39	KPA36	21/05/2014	54	05:24	69.6	519525.5	6431560.3	519698.7	6428430.9					
KPA42	KPA39	21/05/2014	55-56	08:26	65.9	519362.6	6434505.2	519530.1	6431545.0					
KPA45	KPA42	21/05/2014	57-58	11:53	55.4	519225.9	6437562.9	519354.7	6434475.8					
KPA48	KPA46	21/05/2014	59-61	14:37	55.6	519094.5	6440429.3	519040.1	6437353.7					
KPA49	KPA50	21/05/2014	62	17:20	55.1	519122.9	6440372.5	519161.3	6442713.2					
KPA50	KPA53	21/05/2014	63-66	19:50	51.8	518972.3	6442404.9	518650.4	6445630.5					
KPA53	KPA56	21/05/2014	67-69	23:15	50.6	518791.3	6445445.5	518680.7	6448524.9					
KPA56	KPA58	22/05/2014	70	02:38	50.3	518682.8	6448466.0	518547.0	6450525.4					

Modified Transmission Infrastructure for Telford, Stevenson and MacColl Wind Farms

Appendix 2 – Grab photographs

Station		
KPA12	Moray Calate Resulte 2014 Jagoszers SITE: KPA 12 DATE: 20 /05/14 DATE: 1 1	
KPA17	REPJOL Moreay Cables Houster 2014 analyzotio arte: sk /cd /rds	
KPA21	Moray Cable Route - Moray Jangareso 21 SITE: - 24 /05 /14 DATE: - 24 /05 /14	
КРАЗО	Morary Cablas Route 2014 STE: KPA 30 Date: 04/05/1/4	

Station ID		
KPA37		
KPA45		
KPA50	REPIOL Horry Cable Route 2014 Unitalizatio Int: KPASO Int: ALOS (IG	
KPA58		

Station		
ID		
КРВ7	REPORT KR B ANK B ANK	
KPB12		

Modified Transmission Infrastructure for Telford, Stevenson and MacColl Wind Farms

Appendix 3 – Video analysis

SACFOR species abundance data and sediment data

Moray Firth Cable Route 2014 Video Analysis AMB May 2014

SS.SMx.CMx	KPA 45/44	AMB		- 1 20 64	100 84	SS.SMx.CMx		SS.SMx.CMx	с с С					4		0	ć	×					
SS.SMu.CFIMu.SpnMeg	KPA 39/40/42/43/44/48	AMB		00	100 0	SS.SMu.CFIMu.SpnMeg		SS.SMu.CFIMu.SpnMeg	60 4							2		0			٩		
SS.SSa with areas of SS.SMx.CMx	64/84 48/49	AMB		- 1 20 61 51	100 84	SS.SSa with areas of SS.SMx.CMx		SS.SSa with areas of SS.SMx.CMx	3 3				æ	~ م	Я	0			Ж				4
SS.SMu.CFIMu.SpnMeg (coarser variant)	KPA 48/49/50	AMB		1 15 8	100 85	SS.SMu.CFIMu.SpnMeg (coarser variant)		SS.SMu.CFiMu.SpnMeg (coarser variant)	3							0	c	또 다. 안			ط		
SS.SSa (Section 2)	KPA 49/50/51/52	AMB		15	100 85	SS.SSa (Section 2)		SS.SSa (Section 2)	3 2					ж		Я					۲		
SS.SSa with areas of SS.SMx.CMx	KPA 52/53/54/55/56	AMB		4 15 71	100 86	SS.SSa with areas of SS.SMx.CMx		SS.SSa with areas of SS.SMx.CMx	3 3				R	ж	~ ~	0	c	×	0	¥	α ۹		٩.
SS.SSa	KPA 56/57/58	AMB		3	100 97	SS.SSa		SS.SSa	3 2							R	ć	×			٩		
											Code	C0001	D0166 D0409	D0424 D0433	D0443 D0447	D0466	Doroz	D0618 D0623	D0641 D0684 D0710	00/100	P0019 P0811 P1090 P1105	P1257 P1257	P1339 P1360
ode	SS	dertaken by:	tarictice	stimm) otope)		ale for rock	:n - rugged) - mobile)	for sediments	:n - rugged) - mobile)		SACFOR	Crust %	Turf % Turf %	Turf % Turf %	Turf % Turf %	3-15cm Turf %	T6 0/	3-15cm 3-15cm	3-15cm 3-15cm 9-15cm	0-1301	3-15cm 3-15cm Meadow	3-15cm 3-15cm	1-3cm 3-15cm
Biotope Codi	Video analysis unc	Dhusical charac	% Bedrock % Boulder V. Large (- 1024mm) % Boulder Large (- 1024mm) % Boulder Large (- 5124mm) % Cobles food (- 10256mm) % Cobles food (- 10256mm) % Cobles (- 10266mm) % Carele and Pebbles combined (-4mm to 6 % Sand % Sand Biogram (-10206mm) (-102000mm) Biogram (-10200mm) (-102000mm) Biogram (-10200mm) (-10200mm)	Total % TotalSand, Gravel & Pebbles	Feature on 1-5 sc.	Surface relief (eve Stability (stable	Feature on 1-5 scale	Surface relief (eve Stability (stable	Species abundance based on SACFOR scale	Biological characteristics	Porifera Porifera Cridaria	Tubularia indivisa ?Abietinaria abietina	Hydrallmania falcata Sertularia	?Thuiaria thuja Plumulariidae	Nemertesia ramosa Hydroid/Bryozoan mixed substrate	Anthozoa	Arcyonium angratam Virgularia mirabilis Pennatula phosphorea	'Arachnanthus sarsi Urticina Motivitium soullo	Polychaeta	Aphroditta aculeata Chaetopterus tubes Tubes in Sediment (Oweniidae)	Sabella tube Sabella	Spirobranchus Salmacina tube mass	

Biotope Code	۵	SS.SSa	SS.SSa with areas of SS.SMx.CMx	SS.SSa (Section 2)	SS.SMu.CFIMu.SpnMeg (coarser variant)	SS.SSa with areas of SS.SMx.CMx	SS.SMu.CFiMu.SpnMeg	SS.SMx.CMx
Site areas		KPA 56/57/58	KPA 52/53/54/55/56	KPA 49/50/51/52	KPA 48/49/50	KPA 48/49	KPA 39/40/42/43/44/48	KPA 45/44
Cinstacea Cinstacea CinstreTD JA CinstoTE JA CantoDa Canton Paguridae Munda rugosa Munda rugosa Munda rugosa Munda rugosa Munda rugosa Manoodiae Cancer pagurus Locarer pagurus Locarer pagurus	Clust % 80074 3-15cm 51276 1-3cm 51276 3-15cm 51272 3-15cm 51478 3-15cm 51478 3-15cm 5154 3-15cm 5154 3-15cm 5155 3-15cm 5155 3-15cm 5155 3-15cm 5155 3-15cm 5155	00 ~	<u>ке</u> п. Ок.	0 ≃	o	0 K K	α Ο α α	0 ≃
Molusca Gibbula Buccinidae Pectinidae Pectinidae Pectinidae	1-3cm W0157 3-15cm W0702 3-15cm W1768 3-15cm W1768 >-15cm W1771	۲	~0	<i>с</i> с	o	O		ж ж
2000 construct Bryozoa crust Alexonidium diaphanum Eustra follacea Securitustra securifrons Comatoscosa ramulosa	Crust % Y0001 3-15cm Y0076 Turf % Y0187 Turf % Y0194 3-15cm Y0508	2 2	<u>م</u> م	۲		с. ж		٩
Arream clifts ATERODEA (Arream clifts ATERODEA (Archatas or 7 appastendas ATERODEA (Archatas or 7 appastendas ATERODEA (Archatas or 7 appastendas attratementient) (arreading arread Arreador arread Arreador approvas Arreador Arreador approvas Arre	3-15cm 280010 3-15cm 280018 3-15cm 280018 3-15cm 280018 3-15cm 280023 3-15cm 280023 3-15cm 280054 3-15cm 280055 3-15cm 280055 3-15cm 280055 3-15cm 280013 3-15cm 280013 3-15cm 280103 3-15cm 280103 3-	0 0 0	0 0 0	м Ок	~ ~0 ~~	0 0 "	ο ο «	0 "
Juerante Juerante Trakadae (Musieuus) Trakadae (Musieuus) Japaulia anguilla/Mykine glutinosa Lophus presatorius Lophus presatorius Mirante semakil Trisopteus munutus Mirante semakil Trisopteus munutus Mirante semakil Trisopteus munutus Mirante semakil Trisopteus munutus Mirante semakil Trisopteus munutus Mirante semakil Trisopteus munutus Mirante semakil Trisopteus Mirante semakil Trisopteus Trisopteus Trisopteus Trisopteus Mirante Trisopteus Mirante Miran	1-3cm ZE0002 15cm Zf0003 15cm Zf0004 15cm Z60104 15cm Z60149 215cm Z60149 215cm Z60149 215cm Z60149 215cm Z60149 215cm Z60149 215cm Z60441 215cm Z60455 315cm Z60455 315cm Z60455 315cm Z60455 215cm Z60455 215cm Z60455 215cm Z60545	0 0 ~ 00~	0 0 0 42 000	0 ∝ 0000	0 0 0 0	0000	0 0 0 0	~ 0
Red and thous algel furt - long plottomecous aggregation Conditineces Detession samplines Forusting Brown Agge Saccharlen alstsine Saccharlen alstsine Broitim Missellanea Missellanea Fort tubes	Turf % 2001 Turf % 2001 Crusf % 2001 Turf % 2001 Turf % 200594 Crusf % 200594 Crusf % 200594 Crusf % 200594	L	0	0	0	۷		

Moray Firth Cable Route 2014 Video Analysis AMB May 2014

SS.SMx.CMx (with SSa)	KPB 4/5/7/8	AMB		255 5 5 5 25	100 79	SS.SMx.CMx (with SSa)		SS.SMx.CMx (with SSa)	с с С			w	2	- 0	~ 0~		
SS.SSa (Section 3)	KPB 2	AMB		ۍ ۲۵	100 95	SS.SSa (Section 3)		SS.SSa (Section 3)	2 4								
CR.MCR.EcCr.FaAlCr.Pom (sheltered shore variant)	KPB 0	AMB		35 15 15 10	100 25	CR.MCR.EcCr.FaAlCr.Pom (sheltered shore variant) 4	7	CR. MCR.Eccr.FaAlCr.Pom (sheltered shore variant)					4	٣	L 22		
SS.SSa	KPB 0	AMB		100	100 100	SS.SSa		SS. SSa	2 4								
SS.SMx.CMx	KPB 3/4	AMB		5 5 23 20 20	100 43	SS.SMx.CMx		SS.SMx.CMx	4 2				R	~~~~	~ 0~	~	
CR.MCR.Eccr.FaAlCr.Pom	KPB 0/2	AMB		35 15 15 15 10	100 25	CR.MCR.Eccr.FaAlCr.Pom	7	CR.MCR.Eccr.FaAlCr.Pom					۹.	٣	u 22		
SS.SMu. CFIMu. SpnMeg with SS.SMx.CMx	KPA 26/27	AMB		5 25 30 35 35	100 65	SS.SMu.CFIMu.SpnMeg with SS.SMk.OMk		SS.SMu. CF iMu. SpnWeg with SS.SIMx.CMx	3 2				~ _	. దారు			
SS.SMu.CFiMu.SpnMeg (coarser variant)	KPA 24/26/21/28/29	AMB		3 3 2 1	100 3	SS.SMu.CFIMu.SpnMeg (coarser variant)		SS.SMu.CFiMu.SpnMeg (coarser variant)	3				æ	0	ш 22	ша	
SS.SMu.CFiMu.SpnMeg	KPA 8/9/10/11/12/13/14/15 /16/17/18/19/20/21/22/ 23/36/21/28/29/30/31 /32/33/34/35/37/38/39 /40/41/42/44/	AMB		8	100 1	SS.SMu.CFIMu.SpnMeg		SS.SMu.CFiMu.SpnMeg	3-2 4-3				æ	۲	0רא א	۰. ۵	-
											Code	C0001	D0166 D0409 D0424	D0433 D0443 D0447 D0466	D0597 D0618 D0618 D0623 D0641 D0684 D0710	P0019 P0811 P1090 P1195	
ode	se	tertaken by:	teristics.	4mm) tope)		ale for rock n - rugged)	- mobile)	for sediments	:n - rugged) - mobile)		SACFOR	Crust %	Turf % Turf % Turf %	Turf % Turf % 3-15cm Turf %	Turf % 3-15cm 3-15cm 3-15cm 3-15cm	3-15cm 3-15cm Meadow 1-3cm 3-15cm	
Biotope C	Site are:	Video analysis und	Physical charac	% Beurlost, % Beulers V. Large (> 10.24 mm) % Boulder Large (> 51.24 mm) % Boulder Earge (> 55.26 mm) % Cobbles fost mm) % Cobbles fost mm) % Cobbles fost mm) % Shell Brigerin Reef Brigerin Reef Brigerin Reef	Total % Total Sand, Gravel & Pebbles	Feature on 1-5 sc. Surface relief (eve stability fer allo	stability (stable	Feature on 1-5 scale	Surface relief (eve Stability (stable-	Species abundance based on SACFOR scale	Biological characteristics	Porifera	Crudaria Tubularia indivisa Abbietinaria abietina Hvricalimania.	Sertuan is managed as Sertuaria thuja Thuaria thuja Nemetraridae Nemetraria amos a Hydroid/Bryozean mked substrate	Anthoraga Alcyronium digilatuum Permatula phosphorea Tarachmarthus sarsi Metridium senile	Obycharta aculeata Aphrodita aculeata Chaetopterus tubes fubes in Sediment (Owenidae) amice conchilega Sedella tube	•

Biotope Cod	le		SS.SMu.CFIMu.SpnMeg	SS.SMu.CFiMu.SpnMeg (coarser variant)	SS.SMu.CFIMu.SpnMeg with SS.SMx.CMx	CR.MCR.Eccr.FaAlCr.Pom	SS.SMx.CMx	SS.SSa	CR.MCR.EcCr.FaAlCr.Pom (sheltered shore variant)	SS.SSa (Section 3)	SS.SMx.CMx (with SSa)
Site areas			KPA 8/9/10/11/12/13/14/15 /16/17/18/19/20/21/22/ 23/26/21/22/29/30/31 /32/33/34/35/31/38/39 /40/41/42/44/	KPA 24/26/21/28/29	KPA 26/27	KPB 0/2	KPB 3/4	KPB 0	KPB 0	KPB 2	KPB 4/5/7/8
Cutatacea Cravitacea DECAPODA (7Jocarcinus) CARIDEA Nephrops nonvegicus Paguridae Paguridae Amunida rugosa	Crust % 3-15cm 1-3cm >15cm 3-15cm 3-15cm	R0074 S1276 S1293 S1402 S1436 S1436 S1478 S1478	× 00×0	~0	<u>2</u> L	Ŀ	0		Ŀ	0 0	0 00
Inachurae Inachurae Macropodia Carreir pagurus Carreir pagurus	3-15cm 3-15cm 3-15cm 3-15cm 3-15cm	51514 51520 51555 51555 51566 51577	x		۲	Ŀ	0 ~		Ŀ	0	0 4
Molucesa Gibbula Buccinidae Pectiridae Pecter makinus Sepia officinalis	1-3cm 3-15cm 3-15cm 3-15cm >15cm	W0157 W0702 W1768 W1771 W2307	o	٣	O	٩	o		٩		o
Bryozoa crust Acyonidium diaphanum Flustra folacea Securifista securifrons Comalosecoa amulosa	Crust % 3-15cm Turf % 3-15cm	Y 0001 Y 0076 Y 0187 Y 0194 Y 0508	<u>م</u> م			o	<u>~</u> ∞		0		с Окк
Antedon bridat Antedon brida ASTEROIDEA (?Leptasterias muellert) ASTEROIDEA (Asterias or ?Leptasterias muellerin)	3-15cm >15cm >15cm	ZB0010 ZB0018 ZB0018 ZB0018 ZB0018	0 ~ 0	œ		Ŀ	Ŀ	0	Ł	0	
Luda scilars Luda scilars Astropecten irregularis Ceramasteria Poranip pulvilius Arrecropoda placenta	>15cm >15cm 3-15cm 3-15cm 3-15cm 3-15cm	ZB0022 ZB0023 ZB0026 ZB0045 ZB0054 ZB0062	~~~0	٣	O					٣	~
Solasster enbeda Crossaster papposus Henricia Asterfas rubers Martinasterlas glacialis Orbitura ophilura	>156m >156m >156m >156m 3-156m 3-156m	280075 280075 280082 280100 280104 280170	00~	ō		чo	0		чo		00
e cuilly UDEA Echinus esculentus ?Echinocardium cordatum	3-15cm 3-15cm 3-15cm	2B0181 ZB0198 ZB0223	×	а	¥	Ŀ	0		Ŀ		0
Durentle risk, (shoal of fry) Durentle risk, (shoal of fry) Anguilla anguilla/Mydne gluthosa GabrifoRMES M. merkingus/f. minutus M. merkingus/f. minutus M. merkingus/f. minutus Merkingusenus minutus Triskoperus minutus	1-3cm >15cm >15cm >15cm >15cm >15cm >15cm >15cm	ZE0002 ZF0033 Z60011/ZE0006 Z60094 Z6013/200144 Z60142 Z60142 Z60149 Z60149 Z60149	20220 O							<u>.</u>	• o o c
Agomus cataphractus Agomus cataphractus Lumpoarus lamptetaeformis Ammodylidae Callionymistee Godidee FELRONNES PPLeuronectis platesa Microchirus variegatus	3-15cm 3-15cm >15cm >15cm 3-15cm 3-15cm 3-15cm >15cm	ZG0291 ZG0291 ZG0429 ZG0411 ZG0450 ZG0455 ZG0455 ZG0578 ZG0588 ZG0588	00000	~ 0		œ		۲	œ	а со	00 2020
Red and brown algal turf - long Diatomaceous aggregation Conditinesses Polessents anggutea Encrusting Brown Algae Sacchartine altistime Bolfim Miscellame	Turf % Turf % Crust % Turf % Crust % Crust %	20001 20001 2 M0194 2 M0594 2 R0002 2 R0002 2 R0354				u u c	<u> </u>	٩	K HOFK		٩
Trawl hawsers/fishing debris Erect tubes			۵.	٩.		4	۹.				

Biotope descriptions

Representative Images							の時にたけたり						and the second s
Species	?Pleuronectes platessa Alcyonidium diaphanum Alcyonium digitatum Asterias ruhens	Asteroidea Callionymidae	Chaetopterus tubes Decapoda	Diatomaceous aggregation Flustra foliacea Gadiformes	Hydroid/Bryozoan mixed substrate	Inachinae	Luidia ciliaris Microchirus variegatus	Paguridae Pecten maximus	PLEURONECTIFORMES Triglidae				
Sediment and Fauna Description	Sediment Description Slightly shelly, slightly muddy sand. Small holes regularly seen across the area. Fauna within them not evident Small areas of dense coarse shelly	with coarse shell aggregations in the recesses.	Fauna	Main fauna seen were large Pagurid crabs, and an array of fish including gurnards, thick backed sole, flat fish (often plaice) and gadiform fish Jargely	unidentifiable due to quality of image. A few Pecten maximus were seen, and small numbers of	starfish. The hydroid/bryozoan mixed turf and very	small occurrences of Flustra, were rarely seen, found on small amounts of slightly coarser	sediment. Across the area, a gelatinous, filamentous substance was observed, believed to	be a diatomaceous aggregation It occurred as small oozes from the sediment, and formed long	filaments. At times, it was observed as a coating on other hydroid/bryozoan growths.			
Biotope	Biotope SS.SSa	(Offshore Area)	Sublittoral sand and muddy sands.										

	「一本ない」という										かってあると、 あたいしょう なんのうちょう しんち			A LAND AND AND AND AND AND AND AND AND AND								
?Pleuronectes platessa ?Thuiaria thuja	Alcyonium digitatum Ammodytidae	Aphrodita aculeata Asterias rubens	Astropecten irregularis Buccinum undatum Callionumidae	Cancer pagurus	Chaetopterus tubes	Crossaster papposus DECAPODA (?Liocarcinus.)	Diatomaceous aggregation Tubularia indivisa	Echinus esculentus	Flustra foliacea	Hydrallmania falcata	Hydroid/Bryozoan mixed	substrate	Luidia sarsi	Metridium senile	Microchirus variegatus Ophiura ophiura	Paguridae	Pecten maximus PI FLIRONFCTIFORMFS	Plumulariidae	Securiflustra securifrons Snirohranchus	Triglidae	Trisopterus lamarkii	
Sediment Description Slightly shelly, slightly muddy rippled sand. Coarse	shelly sand waves occur across the area, with a coarse mixed sediment of gravel pebbles and	cobbles within the recesses. Regular outcrops of larger areas of coarse mixed sediment occurred,	with greater epiradial cover of rollose hydroids and bryozoans. Small holes and small burrows evident across the area.	Fauna Earing on the codiment largely computied Daginid	crabs, a few small crabs (notably Liocarcinus) and a	selection of that fish including platce and thick backed sole. A variety of starfish were distributed	across the area. The foliose hydroid/bryozoan turf including Flustra and Hydrallmania were largely	concentrated on the areas of coarse mixed	sediment. A rare occurrence of Metridium senile	was seen on a large counce. Federal maximus were more notable across both the sandy and coarser	sediments of the site. One gadoid fish was seen,	potentially hake.		Note	Area noted for sand eels. WGS84 Degminsdecmins	58 09.2191N 002 40.8778W	TO 58 09 2923N 002 40 8623W		Area with noted greater density of Pecten maximus			
Biotope	SS.SSa with SS.SMx.CMx	Sublittoral sand and muddy sands with	undantuoi ai miixea sediment.	(Offshore Area)	Additional FluHyd may	be appropriate in some areas.																

?Pleuronectes platessa Aphrodita aculeata	Asterias rubens Astropecten irregularis Callionvmidae	Diatomaceous aggregation Flustra foliacea Gadiformes Hydroid/Bryozoan mixed substrate Liocarcinus Microchirus variegatus Ophiura ophiura Paguridae Pecten maximus Pectinidae PLEURONECTIFORMES Triglidae
Sediment Description Slightly shelly, slightly muddy rippled sand. Coarse	shelly sand waves occurred infrequently across the area, with large shell hash notable within the recesses with a few scattered nebbles. Small holes	and small burrows evident across the area. Fauna The main fauna noted were flat fish, gurnards, a few gadiform fish, a few starfish and pagurid crabs. Hydroid/bryozoan turf of largely indefinable composition was scattered throughout. One Ophiura ophiura was scen, and one sea mouse (Aphrodita). The diatomaceous aggregation was present across both sand and coarse sand wave areas. As the coarse sand waves had an ephemeral appearance, it was decided to leave the biotope allocation at SSa. The coarser areas did not appear to warrant a separate biotope, so have been noted here as a feature only.
Biotope	SS.SSa (Section2)	Sublittoral sand and muddy sands

Alcyonium digitatum Asterias rubens	Astropecten irregularis Callionymidae Chaetonterus tubes	Diatomaceous aggregation Echinoidea Henricia Hydroid/Bryozoan mixed substrate Ophiura ophiura Paguridae Pecten maximus Perten maximus Triglidae Virgularia mirabilis
Sediment Description Slightly shelly, slightly muddy rippled sand. Small	holes and small burrows evident across the area. Larger fractions of shell hash visible in places.	Fauna The main fauna noted were flat fish, gurnards, a few starfish and pagurid crabs. Hydroid/bryozoan turf of largely indefinable composition was scattered throughout. One Ophiura ophiura was seen. Pecten maximus occurred sporadically. The diatomaceous aggregation was present across the area. The seapen Virgularia mirabilis was very evident, and occurred frequently. Only one Pennatula was noted.
Biotope	SS.SMu.CFiMu.SpnMeg (coarser variant)	Seapens and burrowing megafauna in circalittoral fine mud

1

Γ

Biotope	Sediment Description	?Abietinaria abietina	
	Area dominated by coarse mixed sediment forming	?Thuiaria thuja	
SS.SSa with SS.SMx.CMx	small to approx. 0.5m high coarse gravelly shelly	Asterias rubens	
	sand waves in places. Large shell hash and gravelly	Atelecyclus rotundatus	
Sublittoral sand and	pebbles deposited within the recesses with the	Bryozoa crust	
muddy sands with	occasional cobble. One small boulder seen. Area	Callionymidae	
Circalittoral mixed	interspersed with slightly shelly, slightly muddy	Diatomaceous aggregation	「アイント」という人であり
sediment.	rippled sand. Small holes and small burrows	Flustra foliacea	語した。一部に見ていた。
	evident across the area.	Gadiformes	
CMx, forming waves,		Hydroid/Bryozoan mixed	のないで、たち、「「「「「「「」」」
dominated the area.	Fauna	substrate	
Some support for the	The main fauna noted were hydroid/bryozoan turf,	Luidia ciliaris	
additional FluHyd	including Flustra, Sertularia, Abietinaria and	Munida rugosa	
allocation in places.	potentially Thuiaria thuja. Flat fish, a few starfish	Ophiura ophiura	
	and pagurid crabs were evident, along with the	Paguridae	
Although biotope	round crab Atelecyclus rotundatus. Munida rugosa	Pecten maximus	and the second s
already allocated in the	was occasionally seen in the coarse sediment. One	PLEURONECTIFORMES	いいたなかいというという
offshore area, kept	Ophiura ophiura was noted. Pecten maximus	Sertularia	
separate here due to	occurred relatively regularly throughout.	Spirobranchus	
denser coarse waves	2 2	Trisonterus lamarkii	
rather than coarse	Note. Pecten maximus noted in higher density in	Urticina	
sediment patches.	this area.		いたから、「たいたい」という

Agonus cataphractus Alcyonium digitatum	Buccinidae Callionymidae	Flustra foliacea Hydroid/Bryozoan mixed substrate	Luidia sarsi Munida rugosa Ophiura ophiura Paguridae Pecten maximus Sertularia
Sediment Description Area dominated by coarse mixed sediment forming	small to approx. 0.5m high coarse gravelly shelly sand waves in places. Large shell hash and gravelly	pebbles deposited within the recesses with the occasional cobble. One small boulder seen.	Fauna The main fauna noted were foliose hydroid/bryozoan turf, including Flustra, and Sertularia. A few starfish and pagurid crabs were evident, along with Munida rugosa which was occasionally seen in the coarse sediment. One Ophiura ophiura was noted. Pecten maximus occurred rarely.
Biotope	SS.SMx.CMx	Circalittoral mixed sediment.	Some support for the additional FluHyd allocation in places.

 aurrowing in some areas, al wying form was observed, a urrows and with an urrow stand murrow and with an urrow stand murrow and with a fee of all own with a fee of all own with a fee of all own and areas of clasma multient. a the couldes, and mised perbles and harge shell hash in clasma the couldes, and mised perbles and harge shell hash in clasma multient couldes. The and areas of constant and a startist utures are areas more surrowing mogaliant a worth in a data areas of constant and areas and the production of the area of the area	CFiMu.SpnMea	Sediment Description Sandy mud/muddy sand with burrows, mounds and holes. Area of dense bioturbation.	?Echinocardium cordatum Anguilla anguilla/Myxine dlutinosa	
 wronwag wronwag wronwag wronwag wronwag wronwag main mounds and holes. Bioturbation wreter suited to Nephrops mounds and holes. Bioturbation wreter suited to Nephrops mounds and holes. Bioturbation wreter suited to Nephrops mounds and holes. Bioturbation with a biotuler, and areas of coarser sediment, with a few cobles, and mixed pebbles and large shell hash in few cobles. and mixed pebbles and large shell hash in few cobles. wrougaria mirabilis. Nephrops more and in some areas. wrougaria mirabilis. Nephrops spondically seen. wrougaria mirabilis. Nephrops and first spresent. wrougaria mirabilis. Nephrops and a few startish induding more and a few startish induding a mark in places. belowed to be whying and coarser area wore and a few startish induding and a few with Merindian and a few startish induding a mark indudies. wrougaria and a few startish induding a first indus. wrougaria and a few startish induding a mark indudies a few startish induding a mark indudies. wrougaria and a few startish induding a mark indudies and first and a few startish induding a mark indudies and the startish and a few startish induding a mark in place. wr	6) .		Anseropoda placenta	a stand
 ermad burrows, small mounds and holes. Bioturbation burrows, small mounds and holes. Bioturbation so the event builder trand areas of coarser sediment, with a few vilted to Meyhrops norvegatures outleer, and areas of coarser sediment, with a few large shell hash in flad the bookes, and mixed peobles and large shell hash in cobles, and mixed peobles and large shell hash in cobles, and mixed peobles and large shell hash in cobles, and mixed peobles and large shell hash in chained peobles and areas of coarser sediment, with a few large shell hash in chained peobles. And mixed peobles and large shell hash in chained peobles and areas of coarser sediment, with a few large shell hash in chained peobles and mixed peobles. And mixed peobles and areas of coarser sediment, with a few large shell hash in chained peobles and a few small geodof (1) clearcinus) seen currowing magatauna evident, including the sage ne north. Warding people and a few small geodof (1) allorants and a few small geodof (1) allorants and a few small geodof (1) allorants and a few small geodof (1) and a few small	urrowing	In some areas, a low lying form was observed, a relatively even sandy mud/muddy sand with small	Asterias rubens ASTEROIDEA	a service and
 stree <	e mud	burrows, small mounds and holes. Bioturbation evident but not as deep or dense as areas more	Asteroidea (?Leptasterias muelleri)	
 the boulder, and areas of coarser sediment, with a few cobbles, and mixed pebbles and income areas. Vigular an mixel is hearing a per remetula phosphorea and in some areas. Vigular an mixel is hearing and if fish prosent and a few small apold fish also present. Cance manual phosphorea and in some areas. Vigular and a few small apold fish also present. Cance manual phosphorea and in some areas. Vigular and a few small apold fish also present. Cance manual phosphorea. Flat fish mixed a few surficities mixed a few surficies mixed and a few surficies mixed a few surficies	le more	suited to Nephrops norvegicus. Occasional small	Astropecten irregularis	and the second
Induction coboles, and mixed peobles and large shell hash in Correct for in coluring in the coboles, and mixed peobles and mixed peobles and large shell hash in cancer pagurus Correct for in the condition in some areas. Eurowing megafauna evident, including the same areas. Chocarcinus, see, Chocarcinus, chocarcinus, see, Chocarcinus, cho	s, the	boulder, and areas of coarser sediment, with a few	Callionymidae	小二 米マー 一 一 雨に
trong of fish that fish that fish that fish that fish that annowe Examine fish that fish that fish that fish that fish that fish that fish that fish present incrowing megafarua evident, including the sea performation proving a few small gadoid fish also present. Seen. as wells as a few latent in the low-lying form of the biotope, burrowing and a few small gadoid fish also present. Cancer pagurus observed. Disc ApOA (7Llocarcinus) coditionees deditornees and in the proving a few small gadoid fish also present. Cancer Majoidea pagurus observed. Disc ApOA (7Llocarcinus) hydroid/Bryozoan mixed a deditornees austrate buoarcinus, metangus or T. minutus Majoidea Paguridae present. Sediment with small polybres forming a mart in places, believed to be forming a mart in places, believed to be tow wing and coarser area visit as forwing and coarser area buoarcindae. Disc ApOA (7Llocarcinus) hydroid/Bryozoan mixed metangus or T. minutus Majoidea Paguridae Pagurida	l had the roid	cobbles, and mixed pebbles and large shell hash in places.	Cancer pagurus Chaetopterus tubes	
fish that enorth. Faua Cadiformes enorth. Considered from a few starfish including the sea benorth. Considered from a few starfish including the sea for fish present and a few starfish including virgularia mitabilis. Nephrops sporadically seen. Considered from a few starfish including the fish present and a few starfish including the fish present and a few starfish including the search and a few starfish including the low-lying form of the biotope. burrowing megatama evident, including the seapen pegatama evident, including the seapen megatama evident, including the seapen beinatula phosphorea. Flat fish and a few starfish seen, as well as a few large scallops. The coarser substrate had more dense aggregations of hubularia indivisa. Boulder with Meridium sente froming a "mat" in places, believed to be forming a "mat" in places, believed	tcrop of		DECAPODA (?Liocarcinus)	
 Burowing megafaura evident, including the sea hen roth. Burowing megafaura evident, including the sea rougalram ariabilis. Nephrops sporadically sech rugualram ariabilis. Nephrops sporadically sech rugualram ariabilis. Nephrops sporadically sech area few small gadoid fish also present. Cancer pagurus observed. In the low-lying form of the biotope, burrowing megafaura evident, including the seapen burgaran avident, including the seapen bustrate had more dense aggregations of hydroid/bryozoan mixed unsparted rabs and the locarcinus. In the low-lying form of the biotope, burrowing megafaura evident, including the seapen bustrate had more dense aggregations of hydroid/bryozoan turf, and a very small more than and a few startish bustrate had more dense aggregations of hydroid/bryozoan turf, and a very small more than and a few startish bustrate had more dense aggregations of hydroid/bryozoan turf, and a very small more than and a few startish bustrate had more dense aggregations of hydroid/bryozoan turf, and a very small more than and a few startish bustrate had more dense aggregations of hydroid/bryozoan turf, and a very small more dense believed to be forming a 'mat' in places, believed to be towning a 'mat' in places, believed to be bustrate had more dense agregations of 'triplates' bustrate had more dense believed to be bustrate had more dense believed to be bustrate had more dense agregations of 'triplates' bustrate had more dense agregations of 'triplates' bustrate had more dense believed to be bustrate had bustrate had bustrate	e fish that	Fauna	Gadiformes	all star the
 be north. Virgularia mirabilis. Nephrops sporadically seen. Virgularia mirabilis and rest startis and a few startish and a few startish agurus observed. Heincia Anseropoda placenta. Pagurid crabs and the cocasional Decapod (?Llocarcinus), seen. Gurnards and a few startish agurus observed. In the low-lying form of the biotope, burrowing megafauna evident, including the scapem gagruns of the biotope, burrowing megafauna evident, including the scapem bernatula phosphorea. Flat fish and a few startish seen. as well area sagregations of hydroid/bryozan turf, and a wery small amount of Tubularia indivisa. Boulder with Metridium senile Owenilde. Dowenidae. 	e more	Burrowing megafauna evident, including the sea	Gobiidae	「「「、「
 Virgularia mirabilis. Nephrops sporadically seen. Virgularia neriabilis. Nephrops sporadical fish also present. Virgularia neriabilis. Nephrops norvegicus polycloade tubes and the sagregations of protoid brycozoan turf. and a very small amount of ubularia indivisa. Virgularia micularia nerivisa. Virgularia nelivisa. Virgularia nubelar. Virgulari	ne north.	pen Pennatula phosphorea and in some areas,	Henricia	
Hat Tish present and a Tew startish including Anserolda placenta. Pagurid crabs and the occasional datemany of the biotope. burrowing and a few small gadold fish also present. Cancer and a few small gadold fish also present. Cancer pagurus observed. Including trab and the loccarcinus In the low-lying form of the biotope, burrowing angarua observed. Including the seapen menatula phosphorea. Flat fish and a few starfish megafauna evident, including the seapen seen, as well as a few large scallops. The coarser ubstrate had more dense aggregations of hydrold/bryozoan turf, and a very small amount of trubularia indivisa. Uubularia indivisa. Dudiari indivisa forming a 'mart'in places, believed to be wenidae. Including the seapen megafauna evident, including the seapen aggrediae Nowenidae. Nowenidae. Intel seconser megafaus and rescent seating aggrediae Pertorikae prosent seating provide a verse prosent seating frigidae Pertorikae megafaus and rescent seating aggrediae Pertorikae provide frigidae		Virgularia mirabilis. Nephrops sporadically seen.	Hydroid/Bryozoan mixed	AND IN LO
Anseropoda placenta. Fagurid crabs and the cocasional Decapod (7Liocarcinus), seen. Gurmarda and a few small gadoid fish also present. Cancer paguro observed. and a few small gadoid fish also present. Cancer paguro observed. In the low-lying form of the biotope, burrowing megafauna evident, including the seapen megafauna evident, including the seapen megafauna evident, including the seapen seen, as well as a few large scalalops. The coarser substrate had more dense aggregations of hydroid/bryozoan turf, and a very small amount of 'triglidae '		Flat fish present and a few starfish including	substrate	and the second second
occasional Decaped (7 llocarcinus), seen. Gurnards and a few small gadoid fish also present. Cancer pagurus observed. In the low-lying form of the biotope, burrowing megafauna evident, including the seapen megafauna evident, including the seapen megafauna evident, including the seapen megafauna evident, including the seapen permatula phosphorea. Flat fish and a few starfish megafauna evident, including the seapen megafauna evident, including the seapen megafauna evident, including the seapen permatula phosphorea. Flat fish and a few starfish megafauna evident, including the seapen permatula phosphorea. Flat fish and a few starfish bydroid/hypozoan turf, and a very small amount of Tubularia indivisa. Buulder with Metridium sentie present. Sediment with small polychaete tubes forming a 'mat' in places, believed to be Oweniidae.		Anseropoda placenta. Pagurid crabs and the	Liocarcinus	in the state
and a few small gadoid fish also present. Cancer pagurus observed. In the low-lying form of the biotope, burrowing megafaura evident, including the seapen megafaura evident, including the seapen megafaura evident, including the seapen megafaura evident, including the seapen seen, as well as a few large scallops. The coarser substrate had more dense aggregations of hydroid/bryozoan turf, and a very small amount of tubularia indivisa. Boulder with Metridium senile present. Sediment with small polychaete tubes forming a 'mat' in places, believed to be Oweniidae. Dweniidae.		occasional Decapod (?Liocarcinus), seen. Gurnards	Lumpenus lampretaeformis	
pagurus observed. pagura observed. In the low-lying form of the biotope, burrowing megafauna evident, including the seapen megafauna evident, including the seapen permatula phosphorea. Flat fish and a few starfish seen, as well as a few large scallops. The coarser substrate had more dense aggregations of hydroid/bryozoan turf, and a very small amount of		and a few small gadoid fish also present. Cancer	M.merlangus or T.minutus	
In the low-lying form of the biotope, burrowing megafauna evident, including the seapen megafauna evident, including the seapen pennatula phosphorea. Flat fish and a few starfish seen, as well as a few large scallops. The coarser seen, as well as a few large scallops. The coarser substrate had more dense aggregations of hydroid/bryozoan turf, and a very small amount of Tubularia indivisa. Boulder with Metridium senile present. Sediment with small polychaete tubes forming a 'mat' in places, believed to be Owenildae. Metridae.		pagurus observed.	Majoidea	State of the state
In the low-lying form of the biotope, burrowing megafauna evident, including the seapen Pennatula phosphorea. Flat fish and a few starfish seen, as well as a few large scallops. The coarser substrate had more dense aggregations of hydroid/bryozoan turf, and a very small amount of hydroid/bryozoan turf, and a very small hydroid/bryozoan turf, an			Nephrops norvegicus	A REAL PROPERTY AND A REAL
megafauna evident, including the seapen Pennatula phosphorea. Flat fish and a few starfish Pennatula phosphorea. Flat fish and a few starfish seen, as well as a few large scallops. The coarser substrate had more dense aggregations of hydroid/bryozoan turf, and a very small amount of hydroid/bryozoan turf, and a very small hydroid/bryozoan turf, and a very small hydroid/bryozoan turf a very steria hydroid/bryozoan turf a very steria turf a very steria hydroid/bryozoan turf a very steria turf a very		In the low-lying form of the biotope, burrowing	Ophiura ophiura	
Pennatula phosphorea. Flat fish and a few starfish seen, as well as a few large scallops. The coarser substrate had more dense aggregations of hydroid/bryozoan turf, and a very small amount of Tubularia indivisa. Boulder with Metridium senile present. Sediment with small polychaete tubes forming a 'mat' in places, believed to be Owenlidae.Pennatula phosphorea PLEURONECTIFORMES Triglidae Triglidae Triglidae Triglidae Migularia midivisa forming a 'mat' in places, believed to be Owenlidae.Pennatula phosphorea PLEURONECTIFORMES Triglidae Triglidae Triglidae Migularia midivisa Migularia midivisa Asterias rubens Callionymidae Echinus esculentusPennatula phosphorea Penate tubes Asterias rubens Callionymidae		megafauna evident, including the seapen	Paguridae	
seen, as well as a few large scallops. The coarser substrate had more dense aggregations of hydroid/bryozoan turf, and a very small amount of Tubularia indivisa. Boulder with Metridium senile present. Sediment with small polychaete tubes forming a 'mat' in places, believed to be Oweniidae. Dweniidae. PLEURONECTIFORMES Triglidae Tubularia indivisa Virgularia mirabilis Low Jying and coarser area Asterias rubens Callionymidae Ceramaster/Hippasteria		Pennatula phosphorea. Flat fish and a few starfish	Pennatula phosphorea	「「「「「」」」」」」」」」」」」」」」」」」
substrate had more dense aggregations of hydroid/bryozoan turf, and a very small amount of Tubularia indivisa. Boulder with Metridium senile present. Sediment with small polychaete tubes forming a 'mat' in places, believed to be Oweniidae. Dweniidae. Tubularia indivisa Virgularia midivisa Virgularia midivisa Virgularia mirabilis Low lying and coarser area Asterias rubens Asterias rubens Callionymidae Ceramaster/Hippasteria Echinus esculentus		seen, as well as a few large scallops. The coarser	PLEURONECTIFORMES	and the second second
hydroid/bryozoan turf, and a very small amount of Tubularia indivisa. Boulder with Metridium senile present. Sediment with small polychaete tubes forming a 'mat' in places, believed to be Oweniidae. Dweniidae. Dweniidae. Dweniidae. Tubularia indivisa Present. Sediment with small polychaete tubes forming a 'mat' in places, believed to be Oweniidae. Dweniidae. Dweniete tubes Ceramaster/Hippasteria Echinus seculentus		substrate had more dense aggregations of	Triglidae	and the second s
Tubularia indivisa. Boulder with Metridium senile Virgularia mirabilis present. Sediment with small polychaete tubes Virgularia mirabilis forming a 'mat' in places, believed to be Low lying and coarser area Owenlidae. Asterias rubens Comming a 'mat' in places, believed to be Asterias rubens Comming a 'mat' in places, believed to be Asterias rubens Comeniidae. Asterias rubens Comming a 'mat' in places, believed to be Asterias rubens Comming a 'mat' in places, believed to be Asterias rubens Comming a 'mat' in places, believed to be Asterias rubens Comming a 'mat' in places, believed to be Asterias rubens Comming a 'mat' in places, believed to be Asterias rubens Comming a 'mat' in places, believed to be Asterias rubens Comming a 'mat' in places, believed to be Asterias rubens Comming a 'mat' in places, believed to be Asterias rubens Comming a 'mat' in places, believed to be Asterias rubens Comming a 'mat' in places, believed to be Asterias rubens Comming a 'mat' in places, believed to be Asterias rubens Comming a 'mat' in places' (the trans a rubens') Asterias rubens Com		hydroid/bryozoan turf, and a very small amount of	Tubularia indivisa	のないであるというというという
present. Sediment with small polychaete tubes forming a 'mat' in places, believed to be Oweniidae. Oweniidae. Dweniidae. Callionymidae Ceramaster/Hippasteria Echinus esculentus		Tubularia indivisa. Boulder with Metridium senile	Virgularia mirabilis	
forming a 'mat' in places, believed to be Oweniidae. Oweniidae. Dweniidae. Dweniidae. Asterias rubens Asterias rubens Asterias or ?Leptasterias muelleri) Callionymidae Ceramaster/Hippasteria Echinus esculentus		present. Sediment with small polychaete tubes		このいまです いいしい いいい
Oweniidae. Asterias rubens Asterias or Asterias or Asterias or ?Leptasterias muelleri) Callionymidae Ceramaster/Hippasteria Echinus esculentus		forming a 'mat' in places, believed to be	Low lying and coarser area	A A A A A A A A A A A A A A A A A A A
Asterolaca (Asterias or ?Leptasterias muelleri) Callionymidae Ceramaster/Hippasteria Echinus esculentus		Oweniidae.	Asterias rubens	and the second s
?Leptasterias muelleri) Callionymidae Ceramaster/Hippasteria Echinus esculentus			Asteroidea (Asterias or	A CONTRACTOR OF THE OWNER
califorymidae Ceramaster/Hippasteria Echinus esculentus			?Leptasterias muelleri)	
Echinus esculentus			Calllonymidae	
			cei annaster / mppasteri a Fchinus esculentus	

Cancer pagurus Ceramaster/Hippasteria Echinus esculentus Hydrallmania falcata Hydroid/Bryozoan mixed substrate Munida rugosa Nemertesia ramosa Pecten maximus Sertularia Spirobranchus Tubularia indivisa
 Sediment Description Low lying, relatively even sandy mud/muddy sand with small burrows, small mounds and holes. Bioturbation evident but not as deep or dense as areas more suited to Nephrops norvegicus. Within this area, large sections of coarse mixed sediment with boulders and cobbles. Fauna Burrowing megafauna evident in the softer sediment. Coarse section dominated by hydroid/bryozoan turf, small amounts of Tubularia indivisa, and a notable amount of Munida rugosa under the boulders and cobbles. Occasional Echinus esculentus and a few Pecten maximus seen. One Cancer pagurus seen.
Biotope SS.SMx.CMx Within SS.SMu.CFiMu.SpnMeg SS.SMu.CFiMu.SpnMeg Circalittoral mixed sediment. within Seapens and burrowing megafauna in circalittoral fine mud There may be some support for the additional FluHyd allocation in places.

ſ

Alcyonium digitatum Asterias rubens ASTEROIDEA Bryozoa crust Cancer pagurus Corallinaceae Echinus esculentus	Flustra foliacea Hydroid/Bryozoan mixed substrate Liocarcinus Metridium senile Munida rugosa Paguridae Pecten maximus Plumulariidae Sabella tube Spirobranchus Tubularia indivisa Urticina
Sediment Description Area of hard ground, potentially bedrock in places. Area over-laid with a very coarse mixture of shelly sandy, gravelly pebbly cobble matrix with the occasional boulder. A thin covering of mobile sand of varying depths evident over the hard ground.	Fauna Fauna Fauna Fauna largely comprised of coralline algae and bryozoan crusts with sparse outcrops of foliose hydroid/bryozoan turf including Flustra foliacea and Plumulariidae, with rare Tubularia indivisa. Very small outcrops of Alcyonium digitatum were present, and rare Echinus esculentus. Lots of Munida rugosa were present under the boulders and cobbles, with small crabs such as Liocarcinus evident. Occasionally a large edible crab, Cancer pagurus was seen and a very occasional Pecten maximus. Small starfish were scattered across the area. Debris of fishing ropes present.
Biotope SS.SMx.CMx Circalittoral mixed sediment.	Fauna not considered dense enough to support the additional allocation of FluHyd. However it could be described as an impoverished form.

Lanice and Owenlidae Coarse mixed sediment
?Omalosecosa ramulosa Agonus cataphractus Alcyonium digitatum Ammodytidae Bryozoa crust Callionymidae Callionymidae Callionymidae Cancer pagurus Crossaster papposus Crossaster papposus Crossaster papposus Crossaster papposus Crossaster pagurus Crossaster pagus Crossaster pagurus Crossaster pagurus Conciliae Conciliae Comeria indivisa Urticina
Sediment Description Area of what appears to be hard ground in places, over-laid with a very coarse mixture of shelly sandy gravelly pebbly cobble matrix with a few boulders in places. A thin covering of mobile sand of varying depths evident over the hard ground. In places, extensive patches of rippled sand occurred, before returning to coarse mixed sediment. In places and particularly further offshore, the sand became coarser and thicker in some areas, forming coarse sand waves with large shell debris within the recesses. Fauna The coarse ground had sparse hydroid/bryozoan turf with a few starfish, small amounts of the soft coral Alcyonium digitatum, rare Tubularia indivisa, and Urticina. Boulders were particularly covered in dense hydroid/bryozoan turf with large clusters of Flustra foliacea. Munida rugosa were regularly seen across the area under the coarser sediment. Pecten maximus often seen, and the occasional Cancer pagurus. In some sand waves, rand the occasional conchilega tubes became evident, mixed with smaller tubes believed to be of the family Owenidae. In the deeper coarser sand waves, sand eel activity became very noticeable.
Biotope SS.SMx.CMx with SS.SSa SS.SMx.CMx with SS.SSa Circalittoral mixed sediment with Sublittoral sand and muddy sands Fauna not considered dense enough to support the additional allocation of FluHyd. Small areas could potentially be called an impoverished form.

Inshore sand with biofilm			Ref with algae	
Sand ASTEROIDEA	PLEURONECTIFORMES Biofilm	Algae additions to reef Saccharina latissima ?Delesseria sanguinea Red and brown algal turf - long	Reef ?Abietinaria abietina Hydroid/Bryozoan mixed substrate Alcyonium digitatum Urticina Metridium senile Spirobranchus Munida rugosa Cancer pagurus Gibbula Bryozoa crust ASTEROIDEA Marthasterias glacialis Crossaster papposus Echinus esculentus Labridae Corallinaceae Encrusting Brown Algae	
Sediment Description Inshore area a rippled sand with a few holes, with a	biofilm evident across the area.	From the inshore sand, the area gradually became a bedrock and boulder reef, with a small outcrop of rock with the brown alga Saccharina latissima and long foliose red and brown algal fronds. Where the reef became more established, only foliose red algal fronds remained, namely ?Delesseria sanguinea, before the algae reduced completely.	The area then became a bedrock, boulder and cobble reef, undulating and rising to around 1 to 2.0m approx. in height at its greatest point. A cobble pebble and gravelly sand matrix evident on within the recesses in places. There were small areas where a thin film of sediment was evident on the hard rock surfaces. Fauna Only a few flat fish were evident on the inner shore sand area. Bedrock and boulder reef densely covered by a crust of what is believed to be a brown alga, with coralline algae and bryozoan crusts strongly present. Spirobranchus worm tubes very visible. The urchin Echinus esculentus very common across the area, along with a frequent presence of the soft coral Alcyonium digitatum. Small starfish (Asteroidea) very noticeable, probably Asterias rubens but confirmation difficult. Crossaster papposus very frequent. Cancer pagurus noticed occasionally.	
INSHORE AREA	Biotope	Inshore Sand SS.SSa Sublittoral sand and muddy sands. Bedrock and boulder	reef with algae CR.MCR.EcCr.FaAlCr.Pom (sheltered inshore variant) Bedrock and boulder reef CR.MCR.EcCr.FaAlCr.Pom Faunal and algal crusts with Pomatoceros triqueter and sparse Alcyonium digitatum on exposed to moderately wave-exposed circalittoral rock	

DECAPODA (?Liocarcinus) Paguridae Cancer pagurus Astropecten irregularis ASTEROIDEA Lophius piscatorius Ammodytidae Gadiformes Gobiidae PLEURONECTIFORMES
Sediment Description Rippled sand with a few holes, becoming gradually coarser further offshore. Ripples becoming more mixed and larger in form. A few starfish are scattered across the area, with large pagurid crabs, a few flat fish and a few gadoid fish in places. One monkfish seen. As the sand became coarser, sand eel activity became more apparent.
Biotope SS.SSa (Section 3) Sublittoral sand and muddy sands.

Modified Transmission Infrastructure for Telford, Stevenson and MacColl Wind Farms

Appendix 4 – PSD results

FUGRO EMU LIMITED CERTIFICATE OF ANALYSIS

Certificate Num	nber:	EP/14/4578	Fugro EMU	Job Number:	J/3/08/2610
Job Reference: Mora Trans		Moray Offshore Renewables Ltd - Moray Firth Benthic Ecology Characterisation (Offshore Transmission Infrastructure)			
Prepared For			Prepared By		
Peter Moore Moray Offshore Renewables Ltd. 4th floor 40 Princes Street EH2 2BY Edinburgh United Kingdom			James Hutchinson Fugro EMU Limited Trafalgar Wharf (Unit 16) Hamilton Road Portchester Portsmouth PO6 4PX United Kingdom		
Phone:+2Email:PeWeb:w	44 (0) 1315 5 eter.Moore@ ww.morayoffs	67602 edpr.com shorerenewables.com	Phone: Email: Web:	+44 (0) 2392 209 sediment@fugro www.fugroemu.co	5500 je <u>mu.com</u> <u>com</u>

Sampling Undertaken By:	Fugro EMU	Sampling Date:	24/05/2014			
Date of Receipt:	26/05/2014	Date of Analysis:	28/05/2014 – 05/06/2014			
Sample Matrix:	Marine Sediments					
Method Reference:	Particle Size Distribution by Dry Sieving – Fugro EMU MET/01 based on BS1377: 1990: Parts 1 – 2, and Fugro EMU MET/48 based on the NMBAQC PSA SOP for supporting biological data.					
	*Particle Size Distribution by Laser Diffraction – Fugro EMU MET/50 based on BS ISO 13320: 2009.					
Test Results:	Refer to page 2 of 2					
	Deviating Codes:					
Laboratory Comments:	None					
Authorised Signature:	J.R. HA					
Name:	James Hutchinson					
Position:	Sediment Laboratory Manager					
Issue Date:	06/06/2014					

FUGRO EMU LIMITED CERTIFICATE OF ANALYSIS

 Test Results:
 Particle Size Distribution by Dry Sieving (63000 - 1000 μm) and Laser Diffraction (< 1000 - < 0.09 μm) @ 0.5 Phi Intervals</td>

 Fugre EMU Job Number:
 J/3/08/2610

 Job Reference:
 Moray Offshore Renewables Ltd - Moray Firth Benthic Ecology Characterisation (Offshore Transmission Infrastructure)

SAMPLE ID:	KPB 12	KPB 7	KPA 58	KPA 50	KPA 45	KPA 37	KPA 30	KPA 21	KPA 17	KPA 12	KPA 2
LAB ID:	12543	12544	12589	12590	12591	12592	12593	12594	12595	12596	12598
Aperture [µm]	Fractional [%]										
63000	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0
45000	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0
31500	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0
22400	0.00	6.77	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0
16000	0.00	5.64	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0
11200	0.00	10.87	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0
8000	0.00	6.16	0.22	0.27	0.72	0.00	0.00	0.00	0.00	0.00	00.0
5600	0.00	5.49	0.04	0.04	0.53	0.00	0.00	0.00	0.00	0.00	00.0
4000	0.00	7.33	0.26	0.17	1.01	0.00	0.00	0.00	0.00	0.00	00.0
2800	0.00	7.15	0.39	0.17	5.52	0.04	0.05	0.04	0.00	0.00	0.04
2000	0.02	7.20	0.47	0.36	11.15	0.02	0.00	0.02	0.00	0.00	0.02
1400	0.01	6.63	0.75	0.67	17.05	0.01	0.04	0.01	0.00	0.02	0.10
1000	0.04	5.19	0.93	0.72	18.99	0.04	0.02	0.03	0.06	0.04	0.28
707	0.90	2.91	0.95	0.06	15.40	0.42	0.36	0.85	0.86	0.51	00.0
500	2.77	2.53	3.05	1.85	11.90	0.27	0.71	0.73	3.07	2.00	2.58
354	6.03	2.70	11.07	10.70	7.53	0.01	0.66	1.55	6.39	4.44	17.16
250	10.58	3.75	23.15	24.35	4.07	0.97	1.09	5.94	9.82	8.12	35.28
177	15.76	4.58	28.14	29.47	2.07	8.02	4.36	14.51	12.58	13.26	31.78
125	18.92	3.96	19.78	19.78	1.16	19.15	11.47	21.88	14.12	17.93	11.91
88	16.62	2.24	7.09	6.43	0.70	25.32	18.53	21.16	13.52	18.04	0.85
63	9.74	0.86	0.64	0.42	0.37	20.56	19.58	13.24	10.50	12.57	00.0
44.19	3.46	0.46	0.00	0.01	0.19	96.6	13.83	5.31	6.51	5.77	00.0
31.25	0.98	0.60	0.30	0.52	0.16	2.44	6.66	1.75	3.55	1.95	00.0
22.10	1.23	0.79	0.74	0.00	0.19	0.65	2.87	1.47	2.37	1.35	00.0
15.63	1.95	0.90	0.53	0.62	0.22	1.53	2.49	1.89	2.36	1.89	00.0
11.05	2.19	0.99	0.28	0.39	0.24	2.14	3.14	1.92	2.64	2.20	00.0
7.81	2.12	1.06	0.26	0.42	0.24	1.98	3.34	1.74	2.73	2.17	00.0
5.52	1.95	1.01	0.34	0.52	0.22	1.64	3.00	1.59	2.55	2.04	00.0
3.91	1.66	0.82	0.34	0.51	0.18	1.41	2.44	1.41	2.13	1.82	00.0
2.76	1.22	0.56	0.26	0.39	0.13	1.16	1.82	1.09	1.56	1.43	00.0
1.95	0.75	0.33	0.04	0.25	0.02	0.81	1.22	0.71	0.99	0.95	00.0
1.38	0.42	0.18	0.00	0.01	0.00	0.49	0.75	0.42	0.58	0.56	00.0
0.98	0.27	0.12	0.00	0.00	0.00	0.33	0.54	0.28	0.40	0.37	00.0
0.69	0.24	0.11	0.00	0.00	0.00	0.30	0.51	0.25	0.36	0.32	00.0
0.49	0.17	0.08	0.00	00.00	0.00	0.26	0.42	0.20	0.29	0.25	00.0
0.35	0.00	0.00	0.00	00.00	0.00	0.07	0.11	0.00	0.07	0.01	00.0
0.24	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	00.0	00.0
0.17	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	00.0	00.0
0.12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0
0.09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0
< 0.09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0
TOTAL:	100.00	100.00	100.00	100.00	100,00	100,00	100.00	100.00	100.00	100,00	100.00

	SAMPLE ID:	KPB 12	KPB 7	KPA 58	KPA 50	KPA 45	KPA 37	KPA 30	KPA 21	KPA 17	KPA 12	CPA 2
	LAB ID:	12543	12544	12589	12590	12591	12592	12593	12594	12595	12596	2598
	SAMPLE TYPE:	Unimodal, Poorly Sorted	Polymodal, Very Poorly Sorted	Unimodal, Moderately Sorted	Unimodal, Moderately Sorted	Jnimodal, Poorly Sorted	Unimodal, Poorly Sorted	Bimodal, Poorty Sorted	Unimodal, Poorly Sorted	Bimodal, Poorly Sorted	Unimodal, Poorly Sorted	Jnimodal, Moderately Well sorted
	FOLK [1954 ORIGINAL]:	Slightly Gravelly Muddy Sand	Muddy Sandy Gravel	Slightly Gravelly Sand	Slightly Gravelly Sand	Gravelly Sand	Slightty Gravelly Muddy Sand	Slightly Gravelly Muddy Sand	Slightly Gravelly Muddy Sand	Slightly Gravelly Muddy Sand	Muddy Sand	slightly Gravelly Sand
TEXTURAL GROUP	FOLK [BGS MODIFIED]:	Muddy Sand	Muddy Sandy Gravel	Slightly Gravelly Sand	Slightly Gravelly Sand	Sravelly Sand	Muddy Sand	Muddy Sand	Muddy Sand	Muddy Sand	Muddy Sand	and
	SEDIMENT NAME:	Slightly Very Fine Gravelly Very Coarse Silty Fine	Medium Silty Sandy Medium Gravel	Slightly Very Fine Gravelly Fine Sand	Sightly Very Fine Gravelly Fine Sand	/ery Fine Gravelly Very Coarse Sand	Slightly Very Fine Gravelly Very Coarse Silty Very Fine	Slightly Very Fine Gravelly Very Coarse Silty Very Fine	Slightly Very Fine Gravelly Very Coarse Silty Fine	Slightly Very Fine Gravelly Very Coarse Silty Fine	Very Coarse Silty Fine Sand	slightly Very Fine Gravelly Medium Sand
METHOD OF	MEAN:	Sand 174.04	6376.52	326.48	303.02	1381.44	odina 106.69	Sanu 89.56	5anu 140.17	5ang 161.01	150.03	88.93
MOMENTS	SORTING:	151.01	7802.01	598.47	596.75	1204.09	112.55	123.39	138.93	156.88	134.64	39.66
Arithmetic [µm]	SKEWNESS:	2.30	1.39	10.60	12.12	3.14	13.74	12.78	8.20	1.87	2.22	.43
METHOD OF	KURTOSIS: MEAN	15.85 10.4 FO	3.91 1715 50	143.97	174.83	19.04 363.03	337.04 72 42	295.16 50.87	152.75 an en	8.56 84.27	11.96	31.02 64.43
MOMENTS	SORTING:	3.53	9.00	2.22	2.34	2.65	2.95	3.51	3.13	4.06	3.61	.45
Geometric [Jum]	SKEWNESS:	-1.47	-1.01	-0.83	-1.56	-1.76	-1.85	-1.19	-1.64	-1.12	-1.41	.46
	KURTOSIS:	5.18	3.62	11.18	12.09	9.80	7.14	4.49	6.29	3.98	5.00	.73
METHOD OF	MEAN:	3.26	-0.78	2.16	2.27	0.05	3.79	4.30	3.46	3.57	3.50	.92
MOMENTS	SORTING:	1.82	3.17	1.15	1.23	1.41	1.56	1.81	1.65	2.02	1.85	1.53
	KURTOSIS:	5,18	3.62	11.18	12.09	0.80	7.14	4.49	6.29	3.98	5.00	.73
FOLK AND	MEAN:	123.86	1943.49	226.43	218.43	1032.70	87.62	50.66	105.85	87.60	39.86	64.88
WARD METHOD	SORTING:	3.04	9.10	1.72	1.64	2.25	2.37	3.29	2.63	3.96	3.19	.45
[mrl]	SKEWNESS:	-0.31	-0.32	0.06	-0.05	-0.15	-0.35	-0.45	-0.34	-0.35	-0.33	001
	KURTOSIS: MEAN:	1.70	0.97	1.13	1.06	1.09	1.93	1.45	1.81	1.30	1.70	.98
WARD METHOD	SORTING:	1.60	3.19	0.78	0.71	0.00	1.24	1.72	1.39	1.99	1.67	.54
[Phi]	SKEWNESS:	0.31	0.32	-0.06	0.05	0.15	0.35	0.45	0.34	0.35	0.33	00
	KURTOSIS:	1.70	0.97	1.13	1.06	1.09	1.93	1.45	1.81	1.30	1.70	.98
FOLK AND	MEAN:	Very Fine Sand	Very Coarse Sand	Fine Sand	Fine Sand	Very Coarse Sand	Very Fine Sand	Very Coarse Silt	Very Fine Sand	Very Fine Sand	Very Fine Sand	fedium Sand
WARD METHOD	SORTING:	Poorly Sorted	Very Poorly Sorted	Moderately Sorted	Moderately Sorted	Poorly Sorted	Poorly Sorted	Poorly Sorted	Poorty Sorted	Poorly Sorted	Poorly Sorted	Aderately Well Sorted
[Description]	SKEWNESS:	Very Fine Skewed	Very Fine Skewed	Symmetrical	Symmetrical	Fine Skewed	Very Fine Skewed	Very Fine Skewed	Very Fine Skewed	Very Fine Skewed	Very Fine Skewed	symmetrical
	MODE 1 fumi:	Very Leptokurtic	MESOKUTIC	LeptoKurtic	Mesokurtic	VIESOKUITIC	Very Leptokurtic 106.60	Leptokurric 76.44	Very Leptokurtic	Leptokurtic	Very Leptokurric	Nesokurtic
	MODE 2 [um]:	0.00	48.00.00	0.00	0.00	200.00	0.00	9.43	0.00	9.43	0.00	00
	MODE 3 [Jum]:	0.00	2400.00	0.00	00'0	0.00	0.00	00'0	0.00	0.00	0.00	001
	MODE 1 [Phi]:	2.75	-3.74	2.25	2.25	-0.24	3.25	3.75	2.75	2.75	3.25	.75
	MODE 2 [Phi]:	0.00	-2.24	00.0	0.00	00.0	0.00	6.75	00.00	6.75	0.00	.00
	MODE 3 [Phi]:	0.00	-1.24	00.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	00.
	D10 [µm]:	13.34	105.06	120.10	115.98	347.57	14.19	7.12	16.79	8.96	11.19	63.13
	D50 [µm]:	137.06	2724.42	224.50	220.60	1091.91	93.71 52.15	70.57	116.24	115.47	116.44	63.78
	1090 (Jum):	350.91 26.30	164/5.90 176.87	455.64 3 RD	415.88	2018.21	1/0.11	152.85	245.12 14.60	301.09 40.31	311.1U 01.172	34.27 66
	(D90 - D10) [um]:	337.57	18370.90	335.74	299.91	2270.65	161.95	155.74	228.33	352.14	299.92	71.15
	(D75 / D25) [Jum]:	2.88	23.55	1.99	1.93	2.85	2.16	3.15	2.43	4.36	2.93	.67
	(D75 - D25) [µm]:	147.25	9762.26	158.68	148.04	1143.55	72.13	75.90	101.95	168.82	127.22	35.18
	D10 [Phi]:	1.51	-4.21	1.13	1.27	-1.39	2.51	2.62	2.03	1.47	1.68	.20
	D50 [Phi]:	2.87	-1.45	2.16	2.18	-0.13	3.42	3.82	3.10	3.11	3.10	.92
	D90 [Phi]:	6.23	3.25	3.06	3.11	1.52	6.14 0.45	7.13	5.90	6.80	6.48 2.8F	.62
	(D907 D10) [Phil: D90 - D10) [Phil:	4.12	-0.77 7.46	2./0	2.40	1.10	2.45	2.12	3.87	4.03 5.33	3.85	.17
	(D75 / D25) [Phi]:	1.71	-0.36	1.60	1.56	-0.85	1.38	1.52	1.51	1.97	1.65	.47
	(D75 - D25) [Phi]:	1.52	4.56	66.0	0.95	1.51	1.11	1.66	1.28	2.12	1.55 (.74
	% GRAVEL [63000 - 2000 µm]:	0.02	56.62	1.37	1.01	18.93	0.06	0.05	0.06	0.00	0.00	.06
	% SAND [< 2000 - 63 µm]:	81.37	35.37	95.54	94.45	79.26	74.77	56.81	79.90	70.92	76.91	9.94
	% MUD [< 63 Jm]: % V COABSE CBAVEL :	18.61	8.02	3.09	40.4	1.82	/1:97	43.14	20.03	29.08	23.09	00
	% V CUARSE GRAVEL: % COARSE GRAVEL:	0.00	0.00	00.0	00.0	000	00.0	00.0	0.00	0.00	0.00	00.00
	% MEDIUM GRAVEL:	0.00	17.03	0.22	0.27	0.72	0.00	00.00	0.00	0:00	0.00	00
	% FINE GRAVEL:	0.00	12.82	0.30	0.21	1.54	0.00	00.0	0.00	0.00	0.00	00'
	% V FINE GRAVEL:	0.02	14.36	0.85	0.53	16.67	0.06	0.05	0.06	0.00	0.00	:06
	% V COARSE SAND:	0.05	11.81	1.67	1.39	36.04	0.05	0.06	0.04	0.07	0.05	.38
	% COARSE SAND:	3.68	5.45 6.4r	4.00	1.91	27.30	0.70	1.07	7.40	3.93	2.51	.58
	% FINE SAND:	34.68	0.45 8.54	34.22 47 92	20.00 40.24	3.23	0.90 27 17	1./5	7.48 36.30	10.21 26.60	31 10	2.44
	% V FINE SAND:	26.36	3.11	7.73	5.85	1.08	45.88	13.02 38.11	34.40	24.01	30.61	0.00
	% V COARSE SILT:	4.44	1.06	0.30	0.53	0.36	12.40	20.49	7.06	10.05	7.73	001
	% COARSE SILT:	3.18	1.69	1.27	1.52	0.42	2.18	5.36	3.36	4.73	3.24 (001
	% MEDIUM SILT:	4.31	2.05	0.54	0.81	0.49	4.12	6.48	3.66	5.37	4.38	001
	% FINE SILT: % V FINE SILT:	3.62 1 ar	1.83 n Ra	0.69 0 70	1.04 D 64	0.41	3.06 1 a7	5.43 3.04	3.00	4.68 2 F.F.	3.86	00.
	% CLAY:	1.10	0.50	0.00	0.01	000	1.45	2.34	1.15	1.70	1.51	00

Particle Size Distribution by Dry Sleving (63000 - 1000 µm) and Laser Diffraction (< 1000 - < 0.09 µm) @ 0.5 Phi Intervals J.308.26 10 Moray Offshore Renewables Ltd - Moray Firth Benthic Ecology Charaderisation (Offshore Transmission infrastructure)

T est Results: Fugro EMU Job Number: Job Reference : Appendix 5 – Sediment chemistry results

Cefas (2003) guideline values

	Existing AL 1	Existing AL 2	Revised AL1	Revised AL2
Arsenic (As)	20	50-100	20	70
Cadmium (Cd)	0.4	2	0.4	4
Chromium (Cr)	40	400	50	370
Copper (Cu)	40	400	30	300
Mercury (Hg)	0.3	3	0.25	1.5
Nickel (Ni)	20	200	30	150
Lead (Pb)	50	500	50	400
Zinc (Zn)	130	800	130	600
Tributyltin (TBT,DBT,MBT)	0.1	1	0.1	0.5
Polychlorinated Biphenyls (PCBs)	0.02	0.2	0.02	0.18
Polyaromatic Hydrocarbons				
Acenaphthene			0.1	
Acenaphthylene			0.1	
Anthracene			0.1	
Fluorene			0.1	
Naphthalene			0.1	
Phenanthrene			0.1	
Benzo[a]anthracene			0.1	
Benzo[b]fluoranthene			0.1	
Benzo[k]fluoranthene			0.1	
Benzo[g]perylene			0.1	
Benzo[a]pyrene			0.1	
Benzo[g,h,i]perylene			0.1	
Dibenzo[a,h]anthracene			0.01	
Chrysene			0.1	
Fluoranthene			0.1	
Pyrene			0.1	
Indeno(1,2,3cd)pyrene			0.1	
Total hydrocarbons	100		100	

Note: All results presented as mg.kg-1 (ppm) dry weight

OSPAR CSEMP metal guideline values taken from:

http://www.bodc.ac.uk/projects/uk/merman/assessments_and_data_access/csemp/help/assessment_criteria/sediment/metals.html

	BAC	ERL
Arsenic	25	8.2
Cadmium	0.31	1.2
Chromium	81	81
Copper	27	34
Mercury	0.07	0.15
Nickel	36	21
Lead	38	47
Zinc	122	150

Notes:

- all concentrations are expressed as mg kg-1> dw
- BACs are normalised to 5% aluminium
- for arsenic and nickel, the ERLs are below the OSPAR Background Concentrations of 15 and 30 mg/kg-1 respectively; concentrations are only assessed against the BAC
- for chromium, the ERL equals the BAC; concentrations are only assessed against the ERL

OSPAR CSEMP PAH guideline values taken from:

http://www.bodc.ac.uk/projects/uk/merman/assessments_and_data_access/csemp/help/assessment_criteria/sediment/polycyclic_aromatic_hydrocarbons.html

	BAC	ERL
Naphthalene	8	160
C1-naphthalene	-	155
C2-naphthalene	-	150
Phenanthrene	32	240
C1-phenanthrene	-	170
C2-phenanthrene	-	200
Anthracene	5	85
Dibenzothiophene	-	190
C1-dibenzothiophene	-	85
Fluoranthene	39	600
Pyrene	24	665
Benz[a]anthracene	16	261
Chrysene (Triphenylene)	20	384
Benzo[a]pyrene	30	430
Benzo[ghi]perylene	80	85
Indeno[123-cd]pyrene	103	240

Notes

- all concentrations are expressed as µg kg-1 dw
- BACs are normalised to 2.5% organic carbon in all subregions
- the ERL for C2-naphthalene is the sum of the ERLs for 1-methyl naphthalene and 2-methyl naphthalene

Canadian (CCME 2001) guideline values:

Metals	Units	ISQG / TEL	PEL
Arsenic	mg.kg⁻¹	7.24	41.6
Cadmium	mg.kg⁻¹	0.7	4.2
Chromium	mg.kg⁻¹	52.3	160
Copper	mg.kg⁻¹	18.7	108
Lead	mg.kg⁻¹	30.2	112
Mercury	mg.kg⁻¹	0.13	0.7
Zinc	mg.kg⁻¹	124	271
PAH	Units	ISQG / TEL	PEL
2-Methylnaphthalene	µg.kg⁻¹	20.2	201
Acenaphthene	µg.kg⁻¹	6.71	88.9
Acenaphthylene	µg.kg⁻¹	5.87	128
Anthracene	µg.kg⁻¹	46.9	245
Benz(a)anthracene	µg.kg⁻¹	74.8	693
Benzo(a)pyrene	µg.kg⁻¹	88.8	763
Chrysene	µg.kg⁻¹	108	846
Dibenz(a,h)anthracene	µg.kg⁻¹	6.22	135
Fluoranthene	µg.kg⁻¹	113	1494
Fluorene	µg.kg⁻¹	21.2	144
Naphthalene	µg.kg ⁻¹	34.6	391
Phenanthrene	µg.kg⁻¹	86.7	544
Pyrene	mg.kg⁻¹	153	1398

Analytical Results

Analytical Report

Partial Reports - results awaited - awaiting LSM approval

Report ID - 20065720 - 1

Batch description: J/3/08/2610 - Moray Sediment Analysis

Reported on: 11-Jun-2014

James Hutchinson Fugro EMU Ltd Trafalgar Wharf - Unit 16 Hamilton Road Portchester Porstmouth PO6 4PX

Dear James

Please find attached the results for the batch of 11 samples described below.

Samples Registered on:	28-May-2014
Analysis Started on:	29-May-2014
Analysis Completed on:	11-Jun-2014
Results for Batch Number	20065720
Your Purchase Order Number:	E42027
You will be invoiced shortly by our accounts department.	

If we can be of further assistance then please do not hesitate to contact us.

Yours sincerely

William Fardon Customer Services Team Manager Tel: (0113) 231 2177 nls@environment-agency.gov.uk

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation. Details of analytical procedures and performance data are available on request. The date of sample analysis is available on request.

The Environment Agency carries out analytical work to high standards and within the scope of its UKAS accreditation, but has no knowledge of whether the circumstances or the validity of the procedures used to obtain the samples provided to the laboratory were representative of the need for which the information was required. The Environment Agency and/or its staff does not therefore accept any liability for the consequences of any acts or omissions made on the basis of the analysis or advice or interpretation provided.

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Nottingham Meadow Lane Nottingham NG2 3HN

Analytical Report

Partial Reports - results awaited - awaiting LSM approval

Report ID - 20065720 - 1

Batch description: J/3/08/2610 - Moray Sediment Analysis

Reported on: 11-Jun-2014

Client:	Fugro EMU Ltd		Project:	P Moray S	edimen	t		
		Sai	mple Point Name:	CC Fugro	EMU Lt	d		
Folder No:	002801373		Sampled on:	24-May-14	@ (Tin	ne not sup	plied)	
Comments:	KPA58 (LR- 12599) - 52.0m		·	2			. ,	
Quote No:	11244		Matrix:	Sediment				
Analyte		<u>Result</u>	<u>Units</u>	Flag	<u>MRV</u>	<u>Accred</u>	Lab ID_Te	stcode
Hydrocarbons	: Total : Dry Wt as Ekofisk	0.502	mg/kg		0.05	UKAS	LE	402
Mercury : Dry	Wt	0.00352	mg/kg		0.002	UKAS	LE	1082
Aluminium, HF	Digest : Dry Wt	16700	mg/kg		50	UKAS	LE	756
Barium, HF Dig	gest : Dry Wt	259	mg/kg		20	None	LE	756
Arsenic, HF Di	gest : Dry Wt	5.46	mg/kg		0.4	UKAS	LE	341
Cadmium, HF	Digest : Dry Wt	0.0560	mg/kg		0.03	UKAS	LE	341
Chromium, HF	Digest : Dry Wt	25.0	mg/kg		3	UKAS	LE	341
Copper, HF Di	gest : Dry Wt	3.51	mg/kg		1	UKAS	LE	341
Lead, HF Dige	st : Dry Wt	9.62	mg/kg		3	UKAS	LE	341
Nickel, HF Dig	est : Dry Wt	4.19	mg/kg		1	UKAS	LE	341
Tin, HF Digest	: Dry Wt	0.806	mg/kg		0.5	None	LE	341
Zinc : HF Dige	st : Dry Wt	10.2	mg/kg		5	UKAS	LE	341
Dibutyl Tin : Dr	ry Wt as Cation	<4	ug/kg		3	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calc	ulation			
Dioctyl Tin : Dr	y Wt as Cation	<4	ug/kg		3	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calc	ulation			
Diphenyl Tin :	Dry Wt as Cation	<3	ug/kg		2	None	LE	897
			ELEVATED_MRV	: Dry weight calc	ulation			
Tetrabutyl Tin	: Dry Wt as Cation	<3	ug/kg		2	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calc	ulation			
Tributyl Tin : D	ry Wt as Cation	<4	ug/kg		3	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calc	ulation			
Triphenyl Tin :	Dry Wt as Cation	<3	ug/kg		2	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calc	ulation			
Dry Solids @ 3	30°C	71.7	%		0.5	None	LE	1130

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Nottingham Meadow Lane Nottingham NG2 3HN

Analytical Report

Partial Reports - results awaited - awaiting LSM approval

Report ID - 20065720 - 1

Batch description: J/3/08/2610 - Moray Sediment Analysis

Reported on: 11-Jun-2014

Client:	Fugro EMU Ltd		Project:	P Moray S	ediment			
		Samp	le Point Name:	CC Fugro	EMU Lte	d		
Folder No:	002801374		Sampled on:	24-May-14	@ (Tim	ne not sup	plied)	
Comments:	KPA50 (LR- 12600) - 51.2m			2		·	. ,	
Quote No:	11244		Matrix:	Sediment				
Analyte		<u>Result</u>	Units	Fla <u>g</u>	<u>MRV</u>	<u>Accred</u>	Lab ID_Te	stcode
Hydrocarbons :	Total : Dry Wt as Ekofisk	0.436	mg/kg		0.05	UKAS	LE	402
Mercury : Dry V	Vt	0.00381	mg/kg		0.002	UKAS	LE	1082
Aluminium, HF	Digest : Dry Wt	19200	mg/kg		50	UKAS	LE	756
Barium, HF Dig	jest : Dry Wt	257	mg/kg		20	None	LE	756
Arsenic, HF Dig	gest : Dry Wt	3.20	mg/kg		0.4	UKAS	LE	341
Cadmium, HF	Digest : Dry Wt	0.0420	mg/kg		0.03	UKAS	LE	341
Chromium, HF	Digest : Dry Wt	12.5	mg/kg		3	UKAS	LE	341
Copper, HF Dig	gest : Dry Wt	2.52	mg/kg		1	UKAS	LE	341
Lead, HF Diges	st : Dry Wt	7.89	mg/kg		3	UKAS	LE	341
Nickel, HF Dige	est : Dry Wt	3.70	mg/kg		1	UKAS	LE	341
Tin, HF Digest	: Dry Wt	0.553	mg/kg		0.5	None	LE	341
Zinc : HF Diges	st : Dry Wt	8.40	mg/kg		5	UKAS	LE	341
Dibutyl Tin : Dr	y Wt as Cation	<4	ug/kg		3	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calc	ulation			
Dioctyl Tin : Dry	y Wt as Cation	<4	ug/kg		3	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calc	ulation			
Diphenyl Tin : [Dry Wt as Cation	<3	ug/kg		2	None	LE	897
			ELEVATED_MRV	: Dry weight calc	ulation			
Tetrabutyl Tin :	Dry Wt as Cation	<3	ug/kg		2	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calc	ulation			
Tributyl Tin : Dr	ry Wt as Cation	<4	ug/kg		3	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calc	ulation			
Triphenyl Tin :	Dry Wt as Cation	<3	ug/kg		2	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calc	ulation			
Dry Solids @ 3	0°C	75.2	%		0.5	None	LE	1130

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Nottingham Meadow Lane Nottingham NG2 3HN

Analytical Report

Partial Reports - results awaited - awaiting LSM approval

Report ID - 20065720 - 1

Batch description: J/3/08/2610 - Moray Sediment Analysis

Reported on: 11-Jun-2014

Client:	Fugro EMU Ltd		Project:	P Moray S	edimen	t		
		Sar	mple Point Name:	CC Fugro	EMU Lt	d		
Folder No:	002801375		Sampled on:	24-May-14	@ (Tin	ne not sup	plied)	
Comments:	KPA45 (LR- 12601) - 54.8m		-	-				
Quote No:	11244		Matrix:	Sediment				
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Flag	<u>MRV</u>	<u>Accred</u>	Lab ID_Te	stcode
Hydrocarbons :	Total : Dry Wt as Ekofisk	0.801	mg/kg		0.05	UKAS	LE	402
Mercury : Dry V	Vt	0.00538	mg/kg		0.002	UKAS	LE	1082
Aluminium, HF	Digest : Dry Wt	6770	mg/kg		50	UKAS	LE	756
Barium, HF Dig	jest : Dry Wt	115	mg/kg		20	None	LE	756
Arsenic, HF Dig	gest : Dry Wt	24.6	mg/kg		0.4	UKAS	LE	341
Cadmium, HF	Digest : Dry Wt	0.0380	mg/kg		0.03	UKAS	LE	341
Chromium, HF	Digest : Dry Wt	10.2	mg/kg		3	UKAS	LE	341
Copper, HF Dig	gest : Dry Wt	2.05	mg/kg		1	UKAS	LE	341
Lead, HF Diges	st : Dry Wt	8.86	mg/kg		3	UKAS	LE	341
Nickel, HF Dige	est : Dry Wt	3.64	mg/kg		1	UKAS	LE	341
Tin, HF Digest	: Dry Wt	<0.5	mg/kg		0.5	None	LE	341
Zinc : HF Diges	st : Dry Wt	10.0	mg/kg		5	UKAS	LE	341
Dibutyl Tin : Dr	y Wt as Cation	<4	ug/kg		3	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calc	ulation			
Dioctyl Tin : Dry	y Wt as Cation	<4	ug/kg		3	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calc	ulation			
Diphenyl Tin : [Dry Wt as Cation	<2	ug/kg		2	None	LE	897
Tetrabutyl Tin :	Dry Wt as Cation	<2	ug/kg		2	UKAS	LE	897
Tributyl Tin : Dr	y Wt as Cation	<4	ug/kg		3	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calc	ulation			
Triphenyl Tin :	Dry Wt as Cation	<2	ug/kg		2	UKAS	LE	897
Dry Solids @ 3	0°C	83.9	%		0.5	None	LE	1130

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Nottingham Meadow Lane Nottingham NG2 3HN

Analytical Report

Partial Reports - results awaited - awaiting LSM approval

Report ID - 20065720 - 1

Batch description: J/3/08/2610 - Moray Sediment Analysis

Reported on: 11-Jun-2014

Client:	Fugro EMU Ltd		Project:	P Moray S	ediment			
		Samp	le Point Name:	CC Fugro	EMU Lto	1		
Folder No:	002801376		Sampled on:	24-May-14	@ (Tim	e not sup	olied)	
Comments:	KPA37 (LR- 12602) - 70.0m							
Quote No:	11244		Matrix:	Sediment				
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	<u>Flag</u>	<u>MRV</u>	<u>Accred</u>	Lab ID_Te	stcode
Hydrocarbons :	Total : Dry Wt as Ekofisk	1.63	mg/kg		0.05	UKAS	LE	402
Mercury : Dry W	/t	0.0113	mg/kg		0.002	UKAS	LE	1082
Aluminium, HF	Digest : Dry Wt	21400	mg/kg		50	UKAS	LE	756
Barium, HF Dig	est : Dry Wt	308	mg/kg		20	None	LE	756
Arsenic, HF Dig	est : Dry Wt	4.07	mg/kg		0.4	UKAS	LE	341
Cadmium, HF D	Digest : Dry Wt	0.171	mg/kg		0.03	UKAS	LE	341
Chromium, HF	Digest : Dry Wt	67.1	mg/kg		3	UKAS	LE	341
Copper, HF Dig	est : Dry Wt	6.36	mg/kg		1	UKAS	LE	341
Lead, HF Diges	t : Dry Wt	9.04	mg/kg		3	UKAS	LE	341
Nickel, HF Dige	st : Dry Wt	14.6	mg/kg		1	UKAS	LE	341
Tin, HF Digest :	Dry Wt	1.20	mg/kg		0.5	None	LE	341
Zinc : HF Diges	t : Dry Wt	26.5	mg/kg		5	UKAS	LE	341
Dibutyl Tin : Dry	/ Wt as Cation	<4	ug/kg		3	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calco	ulation			
Dioctyl Tin : Dry	Wt as Cation	<4	ug/kg		3	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calco	ulation			
Diphenyl Tin : D	Dry Wt as Cation	<3	ug/kg		2	None	LE	897
			ELEVATED_MRV	: Dry weight calco	ulation			
Tetrabutyl Tin :	Dry Wt as Cation	<3	ug/kg		2	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calco	ulation			
Tributyl Tin : Dr	y Wt as Cation	<4	ug/kg		3	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calco	ulation			
Triphenyl Tin : [Dry Wt as Cation	<3	ug/kg		2	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calco	ulation			
Dry Solids @ 30	0°C	67.2	%		0.5	None	LE	1130

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Nottingham Meadow Lane Nottingham NG2 3HN

Analytical Report

Partial Reports - results awaited - awaiting LSM approval

Report ID - 20065720 - 1

Batch description: J/3/08/2610 - Moray Sediment Analysis

Reported on: 11-Jun-2014

Client:	Fugro EMU Ltd		Project:	P Moray S	ediment			
		Samp	le Point Name:	CC Fugro	EMU Lto	t		
Folder No:	002801377		Sampled on:	24-May-14	@ (Tim	e not sup	plied)	
Comments:	KPA30 (LR- 12603) - 87.1m							
Quote No:	11244		Matrix:	Sediment				
Analyte		<u>Result</u>	<u>Units</u>	Flag	<u>MRV</u>	Accred	<u>Lab ID_Te</u>	stcode
Hydrocarbons :	Total : Dry Wt as Ekofisk	2.63	mg/kg		0.05	UKAS	LE	402
Mercury : Dry W	Vt	0.0134	mg/kg		0.002	UKAS	LE	1082
Aluminium, HF	Digest : Dry Wt	29800	mg/kg		50	UKAS	LE	756
Barium, HF Dig	est : Dry Wt	320	mg/kg		20	None	LE	756
Arsenic, HF Dig	jest : Dry Wt	4.90	mg/kg		0.4	UKAS	LE	341
Cadmium, HF D	Digest : Dry Wt	0.141	mg/kg		0.03	UKAS	LE	341
Chromium, HF	Digest : Dry Wt	70.7	mg/kg		3	UKAS	LE	341
Copper, HF Dig	est : Dry Wt	6.01	mg/kg		1	UKAS	LE	341
Lead, HF Diges	it : Dry Wt	9.99	mg/kg		3	UKAS	LE	341
Nickel, HF Dige	est : Dry Wt	15.6	mg/kg		1	UKAS	LE	341
Tin, HF Digest :	Dry Wt	1.25	mg/kg		0.5	None	LE	341
Zinc : HF Diges	t : Dry Wt	28.7	mg/kg		5	UKAS	LE	341
Dibutyl Tin : Dry	/ Wt as Cation	<5	ug/kg		3	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calco	ulation			
Dioctyl Tin : Dry	/ Wt as Cation	<5	ug/kg		3	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calco	ulation			
Diphenyl Tin : D	Dry Wt as Cation	<3	ug/kg		2	None	LE	897
			ELEVATED_MRV	: Dry weight calco	ulation			
Tetrabutyl Tin :	Dry Wt as Cation	<3	ug/kg		2	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calco	ulation			
Tributyl Tin : Dr	y Wt as Cation	<5	ug/kg		3	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calco	ulation			
Triphenyl Tin : [Dry Wt as Cation	<3	ug/kg		2	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calco	ulation			
Dry Solids @ 30	O°C	63.6	%		0.5	None	LE	1130

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Nottingham Meadow Lane Nottingham NG2 3HN

Analytical Report

Partial Reports - results awaited - awaiting LSM approval

Report ID - 20065720 - 1

Batch description: J/3/08/2610 - Moray Sediment Analysis

Reported on: 11-Jun-2014

Client:	Fugro EMU Ltd		Project:	P Moray S	ediment			
		Samp	le Point Name	CC Fugro	EMU Lte	d		
Folder No:	002801378		Sampled on:	24-May-14	l @ (Tin	ne not sup	plied)	
Comments:	KPA21 (LR- 12604) - 75.1m			,	U (. ,	
Quote No:	11244		Matrix:	Sediment				
Analyte		<u>Result</u>	<u>Units</u>	<u>Flag</u>	<u>MRV</u>	<u>Accred</u>	Lab ID_Te	stcode
Hydrocarbons :	: Total : Dry Wt as Ekofisk	1.52	mg/kg		0.05	UKAS	LE	402
Mercury : Dry V	Vt	0.0113	mg/kg		0.002	UKAS	LE	1082
Aluminium, HF	Digest : Dry Wt	31000	mg/kg		50	UKAS	LE	756
Barium, HF Dig	jest : Dry Wt	347	mg/kg		20	None	LE	756
Arsenic, HF Dig	gest : Dry Wt	4.75	mg/kg		0.4	UKAS	LE	341
Cadmium, HF	Digest : Dry Wt	0.140	mg/kg		0.03	UKAS	LE	341
Chromium, HF	Digest : Dry Wt	53.6	mg/kg		3	UKAS	LE	341
Copper, HF Dig	gest : Dry Wt	6.28	mg/kg		1	UKAS	LE	341
Lead, HF Diges	st : Dry Wt	10.1	mg/kg		3	UKAS	LE	341
Nickel, HF Digest : Dry Wt		14.7	mg/kg		1	UKAS	LE	341
Tin, HF Digest	: Dry Wt	1.28	mg/kg		0.5	None	LE	341
Zinc : HF Diges	st : Dry Wt	28.5	mg/kg		5	UKAS	LE	341
Dibutyl Tin : Dr	y Wt as Cation	<4	ug/kg		3	UKAS	LE	897
ELEVATED_MRV : Dry weight calculation				ulation				
Dioctyl Tin : Dry	y Wt as Cation	<4	ug/kg		3	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calc	ulation			
Diphenyl Tin : [Dry Wt as Cation	<3	ug/kg		2	None	LE	897
			ELEVATED_MRV	': Dry weight calc	ulation			
Tetrabutyl Tin :	Dry Wt as Cation	<3	ug/kg		2	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calc	ulation			
Tributyl Tin : Dr	ry Wt as Cation	<4	ug/kg		3	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calc	ulation			
Triphenyl Tin :	Dry Wt as Cation	<3	ug/kg		2	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calc	ulation			
Dry Solids @ 3	0°C	71.9	%		0.5	None	LE	1130

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Nottingham Meadow Lane Nottingham NG2 3HN

Analytical Report

Partial Reports - results awaited - awaiting LSM approval

Report ID - 20065720 - 1

Batch description: J/3/08/2610 - Moray Sediment Analysis

Reported on: 11-Jun-2014

Client:	Fugro EMU Ltd		Project:	P Moray S	edimen	t		
		Sa	ample Point Name:	CC Fugro	EMU Lt	d		
Folder No:	002801379		Sampled on:	24-May-14	@ (Tin	ne not sup	plied)	
Comments:	KPA17 (LR- 12605) - 84.3m						. ,	
Quote No:	11244		Matrix:	Sediment				
Analyte		Result	<u>Units</u>	Flag	<u>MRV</u>	<u>Accred</u>	Lab ID_Te	stcode
Hydrocarbons :	Total : Dry Wt as Ekofisk	2.36	mg/kg		0.05	UKAS	LE	402
Mercury : Dry V	Vt	0.0165	mg/kg		0.002	UKAS	LE	1082
Aluminium, HF	Digest : Dry Wt	13700	mg/kg		50	UKAS	LE	756
Barium, HF Dig	est : Dry Wt	339	mg/kg		20	None	LE	756
Arsenic, HF Dig	gest : Dry Wt	4.91	mg/kg		0.4	UKAS	LE	341
Cadmium, HF	Digest : Dry Wt	0.132	mg/kg		0.03	UKAS	LE	341
Chromium, HF	Digest : Dry Wt	46.8	mg/kg		3	UKAS	LE	341
Copper, HF Dig	jest : Dry Wt	6.67	mg/kg		1	UKAS	LE	341
Lead, HF Digest : Dry Wt		10.8	mg/kg		3	UKAS	LE	341
Nickel, HF Digest : Dry Wt		15.5	mg/kg		1	UKAS	LE	341
Tin, HF Digest :	: Dry Wt	1.24	mg/kg		0.5	None	LE	341
Zinc : HF Diges	st : Dry Wt	31.3	mg/kg		5	UKAS	LE	341
Dibutyl Tin : Dry	y Wt as Cation	<4	ug/kg		3	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calcu	ulation			
Dioctyl Tin : Dry	y Wt as Cation	<4	ug/kg		3	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calcu	ulation			
Diphenyl Tin : D	Dry Wt as Cation	<3	ug/kg		2	None	LE	897
			ELEVATED_MRV	: Dry weight calcu	ulation			
Tetrabutyl Tin :	Dry Wt as Cation	<3	ug/kg		2	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calcu	ulation			
Tributyl Tin : Dr	y Wt as Cation	<4	ug/kg		3	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calcu	ulation			
Triphenyl Tin : I	Dry Wt as Cation	<3	ug/kg		2	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calcu	ulation			
Dry Solids @ 3	0°C	69.6	%		0.5	None	LE	1130

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Nottingham Meadow Lane Nottingham NG2 3HN

Analytical Report

Partial Reports - results awaited - awaiting LSM approval

Report ID - 20065720 - 1

Batch description: J/3/08/2610 - Moray Sediment Analysis

Reported on: 11-Jun-2014

Client:	Fugro EMU Ltd		Project:	P Moray S	ediment	t		
		Sa	ample Point Name:	CC Fugro	EMU Lt	d		
Folder No:	002801380		Sampled on:	24-May-14	@ (Tin	ne not sup	plied)	
Comments:	KPA12 (LR- 12606) - 94.0m			2	Ū,		. ,	
Quote No:	11244		Matrix:	Sediment				
Analyte		Result	Units H	Flag	MRV	Accred	Lab ID Te	stcode
Hydrocarbons :	Total : Dry Wt as Ekofisk	1.87	mg/kg		0.05	UKAS	LE	402
Mercury : Dry V	Vt	0.0184	ma/ka		0.002	UKAS	LE	1082
Aluminium, HF	Digest : Dry Wt	15600	mg/kg		50	UKAS	LE	756
Barium, HF Dig	est : Dry Wt	419	mg/kg		20	None	LE	756
Arsenic, HF Dic	jest : Dry Wt	5.94	mg/kg		0.4	UKAS	LE	341
Cadmium, HF	Digest : Dry Wt	0.148	mg/kg		0.03	UKAS	LE	341
Chromium, HF	Digest : Dry Wt	58.8	mg/kg		3	UKAS	LE	341
Copper, HF Digest : Dry Wt		7.40	mg/kg		1	UKAS	LE	341
Lead, HF Diges	st : Dry Wt	12.2	mg/kg		3	UKAS	LE	341
Nickel, HF Dige	est : Dry Wt	17.2	mg/kg		1	UKAS	LE	341
Tin, HF Digest :	: Dry Wt	1.38	mg/kg		0.5	None	LE	341
Zinc : HF Diges	t : Dry Wt	33.4	mg/kg		5	UKAS	LE	341
Dibutyl Tin : Dry	y Wt as Cation	<4	ug/kg		3	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calco	ulation			
Dioctyl Tin : Dry	/ Wt as Cation	<4	ug/kg		3	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calc	ulation			
Diphenyl Tin : D	Dry Wt as Cation	<3	ug/kg		2	None	LE	897
			ELEVATED_MRV	: Dry weight calc	ulation			
Tetrabutyl Tin :	Dry Wt as Cation	<3	ug/kg		2	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calc	ulation			
Tributyl Tin : Dr	y Wt as Cation	<4	ug/kg		3	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calc	ulation			
Triphenyl Tin : I	Dry Wt as Cation	<3	ug/kg		2	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calc	ulation		. –	
Dry Solids @ 3	0°C	69.3	%		0.5	None	LE	1130

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Nottingham Meadow Lane Nottingham NG2 3HN

Analytical Report

Partial Reports - results awaited - awaiting LSM approval

Report ID - 20065720 - 1

Batch description: J/3/08/2610 - Moray Sediment Analysis

Reported on: 11-Jun-2014

Client:	Fugro EMU Ltd		Project:	P Moray Se	dimen	t		
		Sa	mple Point Name:	CC Fugro E	MU Lt	d		
Folder No:	002801381		Sampled on:	24-May-14 (@ (Tin	ne not sup	plied)	
Comments:	KPA2 (LR- 12608) - 86.6m			2			. ,	
Quote No:	11244		Matrix:	Sediment				
Analyte		<u>Result</u>	<u>Units</u>	-lag	<u>MRV</u>	Accred	<u>Lab ID_Te</u>	stcode
Hydrocarbons :	: Total : Dry Wt as Ekofisk	1.67	mg/kg		0.05	UKAS	LE	402
Mercury : Dry V	Vt	0.0230	mg/kg		0.002	UKAS	LE	1082
Aluminium, HF	Digest : Dry Wt	16100	mg/kg		50	UKAS	LE	756
Barium, HF Dig	gest : Dry Wt	434	mg/kg		20	None	LE	756
Arsenic, HF Dig	gest : Dry Wt	6.07	mg/kg		0.4	UKAS	LE	341
Cadmium, HF [Digest : Dry Wt	0.149	mg/kg		0.03	UKAS	LE	341
Chromium, HF	Digest : Dry Wt	55.0	mg/kg		3	UKAS	LE	341
Copper, HF Dig	gest : Dry Wt	7.82	mg/kg		1	UKAS	LE	341
Lead, HF Diges	st : Dry Wt	13.5	mg/kg		3	UKAS	LE	341
Nickel, HF Digest : Dry Wt		16.1	mg/kg		1	UKAS	LE	341
Tin, HF Digest	: Dry Wt	1.62	mg/kg		0.5	None	LE	341
Zinc : HF Diges	st : Dry Wt	36.2	mg/kg		5	UKAS	LE	341
Dibutyl Tin : Dr	y Wt as Cation	<4	ug/kg		3	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calcula	ation			
Dioctyl Tin : Dr	y Wt as Cation	<4	ug/kg		3	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calcula	ation			
Diphenyl Tin : [Dry Wt as Cation	<3	ug/kg		2	None	LE	897
			ELEVATED_MRV	: Dry weight calcula	ation			
Tetrabutyl Tin :	Dry Wt as Cation	<3	ug/kg		2	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calcula	ation			
Tributyl Tin : Dr	ry Wt as Cation	<4	ug/kg		3	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calcula	ation			
Triphenyl Tin :	Dry Wt as Cation	<3	ug/kg		2	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calcula	ation			
Dry Solids @ 3	0°C	70.6	%		0.5	None	LE	1130

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Nottingham Meadow Lane Nottingham NG2 3HN

Analytical Report

Partial Reports - results awaited - awaiting LSM approval

Report ID - 20065720 - 1

Batch description: J/3/08/2610 - Moray Sediment Analysis

Reported on: 11-Jun-2014

Client:	Fugro EMU Ltd		Project:	P Moray S	edimen	t		
		Sa	mple Point Name:	CC Fugro	EMU Lt	d		
Folder No:	002801382		Sampled on:	24-May-14	@ (Tin	ne not sup	plied)	
Comments:	KPB12 (LR- 12648) - 37.4m							
Quote No:	11244		Matrix:	Sediment				
Analyte		<u>Result</u>	<u>Units</u>	<u>-lag</u>	<u>MRV</u>	<u>Accred</u>	<u>Lab ID_Te</u>	stcode
Hydrocarbons :	Total : Dry Wt as Ekofisk	3.21	mg/kg		0.05	UKAS	LE	402
Mercury : Dry W	Vt	0.0235	mg/kg		0.002	UKAS	LE	1082
Aluminium, HF	Digest : Dry Wt	37300	mg/kg		50	UKAS	LE	756
Barium, HF Dig	est : Dry Wt	436	mg/kg		20	None	LE	756
Arsenic, HF Dig	jest : Dry Wt	11.2	mg/kg		0.4	UKAS	LE	341
Cadmium, HF E	Digest : Dry Wt	0.151	mg/kg		0.03	UKAS	LE	341
Chromium, HF	Digest : Dry Wt	52.7	mg/kg		3	UKAS	LE	341
Copper, HF Dig	jest : Dry Wt	10.6	mg/kg		1	UKAS	LE	341
Lead, HF Diges	st : Dry Wt	17.3	mg/kg		3	UKAS	LE	341
Nickel, HF Digest : Dry Wt		19.7	mg/kg		1	UKAS	LE	341
Tin, HF Digest :	: Dry Wt	1.93	mg/kg		0.5	None	LE	341
Zinc : HF Diges	t : Dry Wt	48.2	mg/kg		5	UKAS	LE	341
Dibutyl Tin : Dry	y Wt as Cation	<4	ug/kg		3	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calco	ulation			
Dioctyl Tin : Dry	/ Wt as Cation	<4	ug/kg		3	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calco	ulation			
Diphenyl Tin : D	Dry Wt as Cation	<3	ug/kg		2	None	LE	897
			ELEVATED_MRV	: Dry weight calc	ulation			
Tetrabutyl Tin :	Dry Wt as Cation	<3	ug/kg		2	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calc	ulation			
Tributyl Tin : Dr	y Wt as Cation	<4	ug/kg		3	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calc	ulation			
Triphenyl Tin : [Dry Wt as Cation	<3	ug/kg		2	UKAS	LE	897
			ELEVATED_MRV	: Dry weight calc	ulation			
Dry Solids @ 30	0°C	76.0	%		0.5	None	LE	1130

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Nottingham Meadow Lane Nottingham NG2 3HN

Analytical Report

Partial Reports - results awaited - awaiting LSM approval

Report ID - 20065720 - 1

Batch description: J/3/08/2610 - Moray Sediment Analysis

Reported on: 11-Jun-2014

Fugro EMU Ltd		Project:	P Moray S	edimen	t			
	Sa	mple Point Name:	CC Fugro	EMU Lt	d			
002801383		Sampled on:	24-May-14	@ (Tin	ne not sup	plied)		
KPB7 (LR- 12649) - 20.0m			5	<u> </u>		. ,		
11244		Matrix:	Sediment					
	Result	<u>Units</u>	Flag	<u>MRV</u>	<u>Accred</u>	Lab ID_Te	stcode	
: Total : Dry Wt as Ekofisk	0.140	mg/kg		0.05	UKAS	LE	402	
Wt	< 0.002	mg/kg		0.002	UKAS	LE	1082	
Digest : Dry Wt	19600	mg/kg		50	UKAS	LE	756	
gest : Dry Wt	270	mg/kg		20	None	LE	756	
gest : Dry Wt	4.87	mg/kg		0.4	UKAS	LE	341	
Digest : Dry Wt	0.0700	mg/kg		0.03	UKAS	LE	341	
Digest : Dry Wt	11.4	mg/kg		3	UKAS	LE	341	
gest : Dry Wt	2.04	mg/kg		1	UKAS	LE	341	
Lead, HF Digest : Dry Wt		mg/kg		3	UKAS	LE	341	
est : Dry Wt	3.30	mg/kg		1	UKAS	LE	341	
: Dry Wt	0.740	mg/kg		0.5	None	LE	341	
st : Dry Wt	13.6	mg/kg		5	UKAS	LE	341	
ry Wt as Cation	<4	ug/kg		3	UKAS	LE	897	
		ELEVATED_MRV : Dry weight calculation						
y Wt as Cation	<4	ug/kg		3	UKAS	LE	897	
		ELEVATED_MRV	: Dry weight calco	ulation				
Dry Wt as Cation	<2	ug/kg		2	None	LE	897	
: Dry Wt as Cation	<2	ug/kg		2	UKAS	LE	897	
ry Wt as Cation	<4	ug/kg		3	UKAS	LE	897	
		ELEVATED_MRV	: Dry weight calco	ulation				
Dry Wt as Cation	<2	ug/kg		2	UKAS	LE	897	
30°C	78.0	%		0.5	None	LE	1130	
	002801383 KPB7 (LR- 12649) - 20.0m 11244 Total : Dry Wt as Ekofisk Wt Digest : Dry Wt gest : Dry Wt gest : Dry Wt Digest : Dry Wt Digest : Dry Wt gest : Dry Wt st : Dry Wt st : Dry Wt st : Dry Wt y Wt as Cation Dry Wt as Cation	Sa 002801383 KPB7 (LR- 12649) - 20.0m 11244 : Total : Dry Wt as Ekofisk 0.140 Wt >0.002 Digest : Dry Wt gest : Dry Wt 0.0700 Digest : Dry Wt 11.4 gest : Dry Wt 3.30 : Dry Wt 3.30 : Dry Wt s Cation v Wt as Cation vy Wt as Cation <	Troject.002801383Sample Point Name:002801383Sampled on:KPB7 (LR- 12649) - 20.0mMatrix:11244Matrix:2002801383Sampled on:KPB7 (LR- 12649) - 20.0mMatrix:11244Matrix:2002801383Sampled on:KPB7 (LR- 12649) - 20.0mMatrix:11244Matrix:2002801383Sampled on:KPB7 (LR- 12649) - 20.0mMatrix:11244Matrix:2002801383Matrix:Stopped Stipped Sti	Troject: Triving ofSample Point Name: CC FugroSample Point Name: CC FugroSample don: 24-May-14KPB7 (LR- 12649) - 20.0mIndex: Units FlagMatrix: SedimentIndex: Units FlagTotal : Dry Wt as Ekofisk0.140 mg/kgDigest : Dry Wt19600 mg/kgDigest : Dry Wt270 mg/kgDigest : Dry Wt0.700 mg/kgDigest : Dry Wt2.04 mg/kgDigest : Dry Wt6.65 mg/kgset : Dry Wt3.30 mg/kgset : Dry Wt0.740 mg/kgset : Dry Wt13.6 mg/kgy Wt as Cation<4 ug/kg	Togle Line Lid Findel Clar Sample Point Name: CC Fugro EMU Lt Sampled on: 24-May-14 @ (Tin Matrix: Sediment 11244 Matrix: Sediment Total : Dry Wt as Ekofisk 0.140 mg/kg 0.02 Digest : Dry Wt 19600 mg/kg 0.002 Digest : Dry Wt 19600 mg/kg 0.002 gest : Dry Wt 270 mg/kg 0.4 Digest : Dry Wt 270 mg/kg 0.4 Digest : Dry Wt 0.0700 mg/kg 0.3 Digest : Dry Wt 0.0700 mg/kg 1 St : Dry Wt 0.0700 mg/kg 3 gest : Dry Wt 0.740 mg/kg 1 St : Dry Wt 3.30 mg/kg 1 St : Dry Wt 13.6 mg/kg 3 gest : Dry Wt 13.6 mg/kg 3 gest : Dry Wt 2.4 ug/kg 3 gest : Dry Wt 3.6 mg/kg 5 y Wt as Cation <4	1 Toject. 1 Toject. 1 Toject. 1 Toject. 1 Toject. 002801383 Sample Point Name: CC Fugro EMU Ltd Sampled on: 24-May-14 @ (Time not sup 11244 Matrix: Sediment Itages Ekofisk 0.140 mg/kg 0.05 Digest: Dry Wt as Ekofisk 0.140 mg/kg 0.02 Digest: Dry Wt 19600 mg/kg 0.02 UKAS Digest: Dry Wt 270 mg/kg 0.4 UKAS Digest: Dry Wt 270 mg/kg 0.4 UKAS Digest: Dry Wt 0.0700 mg/kg 0.4 UKAS Digest: Dry Wt 0.0700 mg/kg 1 UKAS set: Dry Wt 0.0700 mg/kg 1 UKAS set: Dry Wt 3.30 mg/kg 1 UKAS set: Dry Wt 0.740 mg/kg 3 UKAS Dry Wt 13.6 mg/kg 3 UKAS Ur Wt as Cation <4	Triget: Industry columbustSample Point Name: CC Fugro EMU LtdO02801383KPB7 (LR-12649) - 20.0m11244Matrix: SedimentMatrix: SedimentMRV Accred Lab ID Te:Total : Dry Wt as Ekofisk0.140mg/kg0.002UKASLEDigest : Dry WtSample Oning/kg0.002UKASLEDigest : Dry Wt19600mg/kg0.002UKASLEDigest : Dry Wt270mg/kg0.002UKASLEDigest : Dry Wt270mg/kg0.002UKASLEDigest : Dry Wt2.04mg/kg0.03UKASLEDigest : Dry Wt2.04mg/kg3UKASLEDigest : Dry Wt2.04mg/kg3UKASLEDigest : Dry Wt3.0mg/kg3UKASLEDigest : Dry Wt2.04mg/kg3UKAS	

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Nottingham Meadow Lane Nottingham NG2 3HN

Analytical Report

Partial Reports - results awaited - awaiting LSM approval

Report ID - 20065720 - 1

Batch description: J/3/08/2610 - Moray Sediment Analysis

Reported on: 11-Jun-2014

Method Description Summary for all samples in batch Number 20065720

- 341 LL ME ICPMS 12.1 & 12.4 Metals HF Digest Open Vessel Hotplate Digest, determined by ICPMS, sieved to <63um
- 402 NLS I UVF 10.2 HCs methanol digested; pentane xch; by UV fluorescence spectrometry
- 756 LL ME ICPOES 22.1 & 22.2 Metals Open Vessel Hotplate HF digest, determined by ICPOES, sieved to <63um
- 897 LE O Organotins (GCMS) 01 acetic acid/methanol extracted; derivatised; determined GCMS (SIM); from "as received" sample
- 1082 LL ME Hg 10.8 Mercury microwave aqua regia digested; acidic SnCl2 reduced; determined by CV-AFS, sieved to <63um.
- 1130 LE P Soil Preparation 01: The sample is air-dried at <30°C in a controlled environment until a constant weight it achieved.

Steve Moss

Laboratory Site Manager

All reporting limits quoted are those achievable for clean samples of the relevant matrix. No allowance is made for instances when dilutions are necessary owing to the nature of the sample or insufficient volume of the sample being available. In these cases higher reporting limits may be **00:00:00** guoted and will be above the MRV.

Solid sample results are determined on a "dried" sample fraction except for parameters where the method description identifies that "as received" sample was used.

The analysis start date specified is the date of the first test, dates for other analysis are available on request.

Please note all samples will be retained for 10 working days for aqueous samples and 30 working days for solid samples after reporting unless otherwise agreed with Customer Services

Key to Accreditation: UKAS = Methodology accredited to ISO/IEC 17025:2005, MCertS = Methodology accredited to MCertS Performance Standard for testing of soils, none = Methodology not accredited

Key to Lab ID: LE = Leeds, NM = Nottingham, SX = Starcross, SC = Sub-Contracted outside NLS, FI = Field Data - outside NLS, NLS = Calculated Any subsequent version of this report denoted with a higher version number will supersede this and any previous versions

END OF TEST REPORT

NLS Leeds Olympia House Gelderd Lane Gelderd Road Leeds LS12 6DD NLS Nottingham Meadow Lane Nottingham NG2 3HN

Modified Transmission Infrastructure for Telford, Stevenson and MacColl Wind Farms

Chart Appendix

Contrains Ordnance Survey data © Crown copyright and database right [2014]. Charts from MarineFIND.co.uk © Crown Copyright, 2013. All rights reserved. Licence No. EK007-0626-MF076. Not to be used for navigation. Moray Offshore Renewables Ltd © 2014. This document is the property of contractors and sub-contractors and shall

Contains Ordnance Survey data © Crown copyright and database right [2014]. Moray Offshore Renewables Ltd © 2014. This document is the property of contractors and sub-contractors and shall not be reproduced nor transmitted without prior written approval. Merential EUNUS Habitats information contained here has been derived from MESH Atlantic webCIS data (www.searchmesh.net/webCIS) which received funding from the FRD-Atlantic Area Programme.

Contains Ordnance Survey data © Crown copyright and database right [2014]. Searchmesh net, 2014. Contains Ordnance Survey data © 2014. This document is the property of contractors and sub-contractors and shall not be reproduced nor transmitted without prior written approval.

Contains Ordnance Survey data © Crown copyright and database right [2014] Moray Offshore Renewables Ltd © 2014. This document is the property of contractors and sub-contractors and shall not be reproduced nor transmitted without prior written approval.

0 -- 10

Contains Ordnance Survey data © Crown copyright and database right [2014] Kontains Ordnance Renewables Ltd © 2014. This document is the property of contractors and sual not be reproduced nor transmitted without prior written approval.

moray offshore renewables Itd

Developing Wind Energy In The Outer Moray Firth

Environmental Statement

Modified Transmission Infrastructure for Telford, Stevenson and MacColl Wind Farms

Technical Appendix 4.6 A

Terrestrial Ecology and Ornithology

This documer	nt was produced	by RPS on behalf of	Moray Offshore Renewables	s Ltd				
Document Owner RPS								
Docum	ent Status	Final						
File	Name	Terrestrial Ecology and Ornithology Technical Append						
Revision	Date	Description	Originated By	Checked By	Approved By			
A1	14/06/2014	For Review	Tony Marshall / Stephen Lockwood	Martin Scott / Julia Ferguson				
A2	20/06/2014	For Review	Stephen Lockwood	Julia Ferguson				
A3	23/06/2014	Final	Stephen Lockwood		Peter Moore			

Moray Offshore Renewables Limited

4th Floor 40 Princes Street Edinburgh EH2 2BY

Tel: +44 (0)131 556 7602

Table of Contents

1.	Introduction4						
2.	Background4						
	2.1	Conservation Designations5					
3.	Base	eline Survey Methodology7					
	3.1 3.2 3.3 3.4	Baseline Field Survey Management7SNH Guidance on Determining an Ecological Baseline7Baseline Desk Studies8Field Survey Methodology8					
4.	Base	eline Survey Results					
	4.1	Desk Study Results14					
5.	Field	I Survey Results29					
	5.1 5.2 5.3	Ornithological Surveys					
6.	Refe	erences					

1. Introduction

This Technical Appendix (TA) describes the terrestrial ecology and ornithology baseline conditions derived from desk studies and contemporary field surveys (2014) specifically associated with modified Onshore Transmission Infrastructure (OnTI) elements of the Telford, Stevenson and MacColl Offshore Wind Farms and Transmission Infrastructure Environmental Statement (ES). The following information is incorporated within this document:

- Baseline field survey methodology for winter walkover, breeding bird and coast line bird surveys;
- Baseline field survey methodology for Phase 1 Habitat, protected species, and bat roost and habitat suitability surveys,
- Baseline desk study results from Seabird 2000, British Trust for Ornithology (BTO) Wetland Bird Survey (WeBS), the North East Scotland Biological Record Centre (NESBReC), the Northeast Local Biodiversity Action Plan (NE LBAP) and the National Biodiversity Network (NBN);
- Baseline field survey results from winter walk over, breeding bird and coast line surveys of the modified OnTI; and,
- Baseline field survey results from Phase 1 Habitat surveys, protected species surveys, and bat roost and habitat suitability surveys of the modified OnTI.

Survey results detailing badger (*Meles meles*) sett locations are included within a separate Confidential Annex to the ES. All surveys and consultations have been guided by recognised best practice and through consultation with Scottish Natural Heritage (SNH) to ensure a comprehensive baseline is collated. A summarised account of all information included within this TA is provided in Chapter 4.6 –Modified Transmission Infrastructure ES.

2. Background

The potential route options of the modified OnTI cable route corridor can be seen in Figure 4.6-1. Route Option 1a (received 14.04.14) is the option surveyed for the purposes of this submission and includes the landfall location at Boyndie Bay (Inverboyndie), (NGR NJ 668647) approximately 1 km to the west of Banff. Refined Route Option 1b shown (Figure 4.6-1), is the newly proposed route (as of 27.05.14). This route has not yet been fully surveyed for ecology or ornithology receptors, however overlap exists between the two proposed corridors and the much of the route has been surveyed. An update to the baseline interests will be undertaken through June and July 2014, however given the generic nature of the habitat throughout the wider area, assessments made using the data collected are deemed to be valid between Route Options 1a and 1b.

Figure 4.6-1 also shows a previous iteration of the cable route running to the north of Route Options 1a and 1b which was surveyed through the 2013/14 winter period for birds of conservation concern and for areas suitable for feeding and/or roosting. This data, although not now associated with the proposed route options, gives an additional sub-set of information to assist as an overview of the area for the potential impacts associated with the development.

The onshore export cable will run in an approximately south-easterly direction, to link with an as yet unconstructed substation near New Deer, which will connect into a second adjacent substation. Route Option 1a covered approximately 28 km, whilst Option 1b covers approximately 33 km.

Areas crossed by the proposed modified OnTI are typical of the wider landscape, with the majority of the route traversing open farmland including a mixture of arable and pastoral fields. Scattered pockets of broadleaved

and coniferous woodland are present along both route options, however, the proposed corridors have sought to minimise the impact to such habitats by deviating around these areas wherever practicable.

All the route options surveyed cross a number of watercourses, the majority of which are minor streams and tributaries draining the wider landscape. Only one major watercourse is required to be 'crossed' along the length of all route options; the River Deveron which, although is not designated within either EU or UK legislation, is known to contain populations of both salmon and sea-trout and is recognised as an important spawning ground for both species.

2.1 Conservation Designations

Eight conservation designations accompany species and habitat records throughout this report:

Habitats Directive

European Council Directive 92/43/EEC on the Conservation of natural habitats and of wild fauna and flora (the 'Habitats Directive') was adopted in 1992 in response to the Bern Convention. This Directive is transposed into UK law by the Conservation of Habitats and Species Regulations 2010 (together with the Conservation (Natural Habitats, &c.) Regulations 1994). The Directive requires Member States to maintain habitats listed on Annex I at a favourable conservation status through the creation of a network of Special Areas of Conservation (SACs).

Birds Directive

The European Union meets its obligations for birds through Directive 2009/147/EC (the 'Birds Directive') on the conservation of wild birds (codified version of the European Council Directive 79/409/EEC as amended). This legislation was adopted in 1979 in response to increasing concern about declines in Europe's wild birds. The Directive emphasises the protection of habitat for endangered and migratory birds listed on Annex I through the creation of a network of Special Protection Areas (SPAs).

Conservation of Habitats and Species Regulations 2010

In Scotland, the Conservation of Habitats and Species Regulations 2010 (together with the Conservation (Natural Habitats, &c.) Regulations 1994) transpose the Council Directive 92/43/EEC on the conservation of natural habitats and of wild fauna and flora (the Habitats Directive) into UK law. The Regulations protect European sites and European protected species (EPS). The Regulations make it an offence (subject to exceptions) to deliberately capture, kill, disturb, or trade in rare and endangered animals listed on Schedule 2.

Wildlife and Countryside Act 1981

The Wildlife and Countryside Act 1981 consolidates existing national legislation to implement the Bern Convention and Birds Directive in the UK. The Act received royal assent in 1981. It protects native species, controls the release of non-native species, enhances the protection of Sites of Special Scientific Interest (SSSIs) and builds upon rights of way rules. Special penalties are available for offences related to rare and endangered birds, listed on Schedule 1, and animals, listed on Schedule 5.

Birds of Conservation Concern

The population status of UK birds is reviewed every five years to provide an up-to-date assessment of conservation priorities. The 2009 review of Birds of Conservation Concern (BoCCs) (Eaton et al., 2009) allocated 246 species onto red, amber or green lists. Seven quantitative criteria were used to assess population status: global conservation status, recent decline, historical decline, European conservation status, rare breeders, localised species and international importance.

Protection of Badgers Act 1992

Badgers are protected by the Protection of Badgers Act 1992, which consolidates previous legislation. Under the Act, it is an offence to kill, injure or take a badger; dig for a badger; cruelly ill-treat a badger; possess or control a dead or live badger; damage or destroy a badger sett (obstruct access, cause a dog to enter the sett, or disturb a badger while it is occupying the sett). Licenses to undertake some actions can be issued from SNH if justified.

Scottish Biodiversity List

The Scottish Biodiversity List (SBL), published in 2005, is a list of flora, fauna and habitats which Scottish Ministers consider to be important for Scottish biodiversity conservation. The list was developed by a partnership of organisations, specifically, the Scottish Biodiversity Forum as well as the Scottish public. The criteria required for inclusion on the SBL include scientific as well as a social criterion of culturally important species and habitats based on a survey of the Scottish public. The list now includes all species previously included within the UK Biodiversity Action Plan (UK BAP) for Scotland, which UK wide has been superseded by the UK Post-2010 Biodiversity Framework (2012). The SBL supports Scotland's Biodiversity Strategy in relation to the wider aims of the current UK framework.

Northeast Local Biodiversity Action Plan Priority Habitats and Species

The NE LBAP aims to protect and enhance local biodiversity across Aberdeen, Aberdeenshire and Moray. Formed in 1996, it is a partnership of statutory and voluntary agencies and individuals. The NE LBAP develops Local Action Plans which set out measures to conserve priority habitats and species. Once published, plans are implemented and periodically reviewed.

3. Baseline Survey Methodology

3.1 Baseline Field Survey Management

Baseline field surveys were carried out from November 2013 to March 2014 for wintering birds on an initial indicative route option to the north of Route Option 1a and 1b (Figure 4.6-1). Surveys for breeding birds are currently on-going along the refined Route Option 1b and at the coastal landfall location at Inverboyndie, increasing the baseline data for the OnTI. Surveys assessing the terrestrial ecology were undertaken throughout May 2014, quantifying the use of the area by protected mammals, mapping habitats and assessing their potential to support bats.

The 'ecology survey area' for all work completed was defined as a 550 m wide band including a construction corridor and suitable buffer surrounding this. The total area surveyed equated to 13.5 km² of a total available survey area of 18.3 km²; restricted access by a number of landowners during the survey period limited the total area able to be assessed in the field. Updates to these restricted areas and the baseline survey information will be included within the report to be submitted in summer 2014.

All data collected throughout the course of the field surveys was entered into relevant databases, digitised using ArcGIS Geographical Information Systems (GIS) software, where applicable, and quality assured using RPS in house audit systems.

3.2 SNH Guidance on Determining an Ecological Baseline

Consultation with SNH was conducted via a Scoping Report issued in April 2014, and a meeting on 9 May 2014 to discuss survey and assessment methodology and timescales for both ecology and ornithology. Following this consultation process, SNH issued the following advice on 23 May 2014:

- Adequate detail of the cable laying technique(s) should be provided so that potential impacts to sensitive species and habitats during the construction phase can be assessed;
- The route is not expected to impinge on any designated ornithological sites;
- Omission of winter bird surveys is acceptable given that the timeline for construction specifies that the winter months will be avoided;
- Additional breeding bird surveys should be carried out immediately prior to construction to identify nesting attempts, particularly those of Schedule 1 species;
- SNH are content with the proposed list of protected species surveys outlined in section 5.2.6 of the scoping report;
- In addition to the scoping response received following submission of the scoping report, SNH confirmed at the meeting in May that great crested newt survey work was not required;
- Relevant District Salmon Fishery Boards should be consulted regarding potential impacts to salmonids and other fish species at river crossings;
- Surveys for freshwater pearl mussels are not required provided adequate sediment management and pollution prevention plans are in place;
- SNH support the proposal to undertake Phase 1 surveys along the cable corridor route and buffer with the understanding that follow up National Vegetation Classification (NVC) work for important areas may be required. As set out in the scoping report, they also advise that this is also used to identify where protected species survey work is appropriate; and,
- Protected species pre-construction survey work revisiting the project footprint should be undertaken to
 ascertain any changes in the degree of wildlife activity as this could have implications for the level of
 mitigation required.

During the course of the May 2014 meeting SNH were informed of the timelines for submission and it was outlined that all surveys would not be completed by these dates; this is particularly the case for breeding bird surveys along the modified OnTI including the landfall location. SNH accepted that a report submitted following the initial ES submission would be appropriate for further detail of the findings of these surveys.

3.3 Baseline Desk Studies

The following organisations and data sources were contacted for relevant historical and contemporary species and habitat records:

- Joint Nature Conservation Committee (JNCC).
- BTO;
- North East Scotland Raptor Study Group (NESRSG);
- Royal Society for the Protection of Birds (RSPB);
- Deveron, Bogie and Isla Rivers Charitable Trust;
- District Salmon Fisheries Boards;
- NESBReC;
- Scottish Wildlife Trust (SWT);
- North East Scotland Bat Group;
- Saving Scotland's Red Squirrels (SSRS); and
- Botanical Society of Britain and Ireland (BSBI).

3.4 Field Survey Methodology

Winter Bird Surveys:

A total of three winter walkover survey visits were undertaken of the proposed substation location and wider area in November 2013 and February and March 2014, coupled with a single walkover survey of the original indicative route option in March 2014. Surveys sought to identify species of conservation concern and habitat which might be utilised by such species for foraging and/or through the winter period. Although this information has now been deemed by SNH as not required, it still provides useful additional background regarding the use of the area by such species.

Breeding Bird Surveys

At the time of writing, a single breeding bird survey visit had been completed. Two further surveys will be carried out in June and July 2014, with the results of these surveys being included in the report to be submitted in Summer 2014. The surveys have been (and will be) undertaken according to the Common Bird Census (CBC) methodology (Gilbert *et al.*, 1998; Marchant, 1983). Surveys are carried out during periods of good weather (i.e. good visibility, no persistent rain or fog, avoiding excessive heat or cold or wind speeds exceeding Beaufort Force 4) from one hour before dawn to six hours after dawn. The location and behaviour of all birds are recorded directly onto 1:10,000 scale Ordnance Survey (OS) maps using standard BTO notation.

All records of birds are digitised using ArcGIS software and territory analysis will be carried out on completion of all surveys. Birds are assumed to be holding territory if one or more of the following behaviours are observed:

- Displaying or singing;
- Presence of a nest, eggs or young (including newly-fledged birds);

- Agitated behaviour, specifically, alarm calls or distraction display; and/or
- A territorial dispute.

In the absence of any of these behaviours, a pair observed together in suitable habitat is also considered to be holding a territory. Other records are considered to be non-breeding birds.

Coastal Bird Surveys

Coastal bird surveys were undertaken at the two locations (Inverboyndie and Sandend) investigated as potential point of landfall for Offshore Transmission Infrastructure (OfTI(+)) cables originating from the three consented wind farms. A landfall location has now been selected at Inberboyndie but the results of both survey locations have been reported here for context. A total of three survey visits are proposed to each location between May and July 2014. To date only the May surveys have been completed.

The survey area at each location includes the working corridor of the proposed cable route plus an additional 1 km buffer stretching east and west along the coast lines. The coast lines were buffered to a distance of 500 m offshore to include birds on the water or in flight above the sea, visible from land. Surveyors walked the coast within the survey area from west to east, mapping all waterbird species (defined by the BTO as all divers, grebes, cormorants, herons, wildfowl, waders, gulls and terns) on a 1:5,000 scale OS map which had a north-south grid of 250 x 250 m cells placed across it to improve accuracy. Standard BTO codes were used in recording birds, with notes of behaviour also made (e.g. roosting, loafing, foraging etc.).

Surveys were undertaken simultaneously at both locations to reduce the impact of confounding factors (e.g. weather conditions and tidal state) causing any potential bias in results.

Surveys were timed to be carried out across the survey programme at different times of the tidal cycle to ensure that all species and activities were captured. Surveys were timed as such:

- One survey commencing two hours prior to high tide;
- One survey commencing two hours prior to slack tide; and,
- One survey commencing two hours prior to low tide.

Phase 1 Habitat Surveys

Surveys of the modified OnTI were carried out across May 2014 with the purpose of defining Phase 1 Habitat type and extent across the 18.4 km² of the available ecology survey area. Surveys followed the standard JNCC (2010) guidelines.

The Phase 1 Habitat classification and associated field survey technique provides a relatively rapid system of recording semi-natural vegetation and other wildlife habitats. Each habitat type is defined by way of a brief description and is allocated a specific name, alpha-numeric code and unique mapping colour. The system has been widely used and continues to act as the standard technique for habitat survey across the UK.

The ecology survey area was walked, habitats were inspected and delineated directly onto 1:10,000 Ordnance Survey maps using standard alpha-numeric notation. Target notes (TNs) were made to highlight features of interest or any aspect too small to be mapped; these were supported by photos and GPS (Global Positioning System) coordinates. Target notes are referred to throughout the text and in figures by a sequential number prefixed with TN, e.g. TN18. Where designated conservation sites, areas of high biodiversity or peat in the
superficial geology were encountered, these were mapped to National Vegetation Classification (NVC) level (Rodwell, 1991-2006; Rodwell, 2006)

Protected Species Surveys

Surveys were carried out across the OnTI throughout May 2014 in periods of suitable weather where heavy rainfall would not limit the quantity of field signs present across the survey area for each species.

Field evidence of the following protected species was searched for across the 18.4 km² of the accessible ecology survey area:

- Otter (Lutra lutra);
- Badger (*Meles meles*);
- Red squirrel (*Sciurus vulgaris*);
- Water vole (Arvicola amphibious);
- Pine marten (*Martes martes*); and
- Wild cat (Felis silvestris).

Otter

All safely accessible watercourses in the ecology survey area were searched for field evidence of otter. Evidence was recorded directly onto 1:10,000 Ordnance Survey maps. Photos and GPS coordinates were taken to support recordings made on maps. Otter field evidence recorded is as described by Bang and Dahlstrøm (2001) and SNH (2008):

- Holts: these are underground features where otters live. They can be tunnels within bank sides, underneath root plates or boulder piles, and even man-made structures such as disused drains. Holts are used by otters to rest during the day and are the usual site of natal or breeding sites. Otters may use holts permanently or temporarily;
- **Couches**: these are above-ground resting sites. They may be partly sheltered or fully exposed. Couches may be regularly used, especially in reedbeds and on in-stream islands. They have been known to be used as natal and breeding sites. Couches can be very difficult to identify, sometimes consisting of no more than an area of flattened grass or earth, and are best identified by the presence of other field evidence (e.g. spraints). Where rocks or rock armour are used as couches, these can be almost impossible to identify without observing the otter in-situ;
- Feeding evidence: the remains of prey items may be found at preferred feeding stations. Remains of fish, crabs or skinned amphibians can indicate the presence of otter;
- Spraints: otter faeces can be used to mark territories, often on in-stream boulders. They can be present within or outside the entrances of holts and couches. Spraints have a characteristic smell and often contain fish remains;
- Prints: otters have characteristic footprints that can be found in soft ground and muddy areas;
- Paths: these are terrestrial routes that otters take when moving between resting sites and watercourses, or at high flow conditions when they will travel along bank sides in preference to swimming; and
- Slides and play areas: slides are typically worn areas on steep slopes where otters slide on their bellies, often found between holts/couches and watercourses. Play areas are used by juvenile otters in play, and are often evident by trampled vegetation and the presence of slides. These are often positioned in sheltered areas adjacent to the natal holt.

Badger

All suitable habitat in the ecology survey area was searched for field evidence of badger. Evidence was recorded directly onto 1:10,000 Ordnance Survey maps. Photos and GPS coordinates were taken to support any recordings made. Badger field evidence recorded is as described by Neal and Cheeseman (1996), Bang and Dahlstrøm (2001) and SNH (2001):

- Setts: entrances are typically wider than they are tall with a flattened bottom. Widths vary dependent on use, however are on average approximate 30 cm. The number of entrances to a sett is dependent on the underground size amount of use a sett receives. Numbers of entrances can be used to classify the type of sett at a particular location;
- **Spoil heaps**: these are heaps of earth excavated by badgers. Material is often coarse due to badgers' large paws and claws, and heaps may contain scratched rocks, badger remains or hairs. Spoil heaps outside entrances of a well-established sett can be very large, and often have a well-defined furrow or groove from sett entrance to spoil heap;
- Foraging signs: badgers often dig 'snuffle holes' for worms or soil-dwelling grubs. These are typically conical in shape, 10-15 cm across, with material dug out on more than one side. Badgers also occasionally dig up wasps' and bees' nests in late summer;
- Latrines: these are small pits similar to snuffle holes which contain badger faeces. Faeces can be soft and muddy in appearance, or contain wing cases of insects, husks of grain or stones/pips of berries. Latrines are often, though not always, found close to setts and can comprise one to more than a dozen pits. Importantly, they are also used as territorial boundary markers;
- **Prints**: badger prints are very distinctive, with a broad, kidney-shaped pad and five toes lined up at the front. Fore prints (4.5-6.5 cm across) are larger than hind prints (4.0-5.0 cm across), and the imprints of claw ends are further away from the toes on fore prints as the claws are much longer;
- **Runs**: well-used badger runs are often very conspicuous. Runs typically link between sett entrances, or lead away from a sett towards foraging grounds or other setts. They can also be found well away from setts, often where badgers cross roads or go through gaps beneath fences;
- Scratching posts: setts often have one or more scratching posts nearby, the bark on the trees will be scored, shredded or completely removed up to a height of 1 m; and
- Hair: these are white or whitish with a black band towards the tip. They are 7-10 cm long, the black band is 1-2 cm and the white tip is about 1 cm, they are quite coarse and oval in cross-section. Hairs are often found stuck in brambles or barbed wire fences.

Red Squirrel

All suitable habitat in the ecology survey area was searched for field evidence of red squirrels. Evidence was recorded directly onto 1:10,000 Ordnance Survey maps. Photos and GPS coordinates were taken to support recordings made on maps. Red squirrel field signs are described in Gurnell *et al.* (2009) and evidence includes:

- Feed signs Pine cones stripped of all seed leaving the remaining core;
- Feeding stations Often stumps in forestry or open areas where a collection of stripped cones are present; and,
- **Dreys** round ball / nest like structures, usually c.30 cm in diameter situated close to the stem / truck of a tree. Note, there is no discernable difference between red and grey squirrel dreys.

Sightings of individuals is the most reliable determinate of species presence.

Watervole

All suitable habitat in the ecology survey area was searched for field evidence of water vole. Evidence was recorded directly onto 1:10,000 Ordnance Survey maps. Photos and GPS coordinates were taken to support recordings made on maps. Water vole field evidence includes:

- **Burrows:** these are wider than they are tall, 4-8 cm across and usually surrounded by characteristic grazed 'lawns'. There may be droppings near burrow entrances, but no spoil heaps;
- Feeding stations: these are often located along runs or haul-out platforms at the water's edge. At the base of vegetation, they consist of neatly clipped stems of grass, sedge or rush up to 10cm long with grooved teeth marks at the cut ends;
- Latrines: these are typically found at prominent points along watercourses such as flat stones or bare earth. They contain lozenge-shaped droppings, approximately 8-12 mm long and 4-5 mm wide. Fresh droppings are greenish, changing to black when older;
- Prints: these are star-shaped, although hard to tell apart from prints of brown rat; and,
- **Runs:** these usually occur within 3 m of a watercourse. They are low tunnels pushed through vegetation, 5-9 cm across and branching, linking the watercourse with feeding areas and burrow entrances.

Pine Marten

All suitable habitat in the ecology survey area was searched for field evidence of pine marten. Evidence was recorded directly onto 1:10,000 Ordnance Survey maps. Photos and GPS coordinates were taken to support recordings made on maps. Pine marten field evidence includes:

- Scats: these vary greatly depending on diet but tend to be dark in colour with a coiled or twisted appearance. They are usually 4-12 cm long and 0.8-1.8 cm in diameter. Scats are reported to have a fruity smell often likened to parma violets. Pine marten use scats to mark territory and will often leave scats inside or close to dens;
- **Dens:** tend to be found in well wooded areas with lots of cover. Dens can be found in a variety of locations including elevated tree hollows, under fallen trees in the root ball and in rocky cairns; and,
- **Prints:** pine marten have 5 toes though often only 4 will show in the imprint. Paw imprints are between 40 and 65 mm in diameter.

Wildcat

All suitable habitat in the ecology survey area was searched for field evidence of wildcat. Evidence was recorded directly onto 1:10,000 Ordnance Survey maps. Photos and GPS coordinates were taken to support recordings made on maps. Wild cat field evidence includes:

- Scats: usually black or dark brownish-green when fresh, become a dry, light green-grey with age. Roughly cylindrical in shape, 15 mm diameter and 40-80 mm long, but may be formless depending on diet. Wildcat scats can be difficult to separate from those of domestic cats;
- Claw marks: left on trees to act as territory markers. Similar scratch marks are also left by badgers and domestic cats;
- **Paw prints:** again, similar to those of domestic cats. Footprint has 4 toes, a 3-lobed main pad and no claw marks as these will be retracted when walking; and
- **Dens:** wildcats den in a variety of locations including hollow trees, rock crevices, rabbit burrows, disused badger setts or fox earths.

Bat Roost and Habitat Suitability Survey

This survey was carried through May 2014 in conjunction with the Phase 1 Habitat survey covering the 18.4 km² of the ecology survey area. As surveyors walked the ecology survey area recording Phase 1 Habitats, habitats were also considered for their potential suitability to support roosting, foraging or commuting bats. Surveyors categorised habitats to be of high, medium or low suitability based on roosting, foraging or commuting suitability criteria (Table 1). Thus, potential bat roosts (buildings, bridges, mature trees), commuting routes (linear features such as hedgerows and lines of trees) and foraging habitat (water bodies, marshy grassland, cow fields) were classed to be of low, medium or high value. Photos, target notes and GPS coordinates were taken to support recordings made on maps.

Habitat suitability was digitised using ArcGIS software and overlain onto aerial imagery. Interpretation notes were made based on the target notes and habitat suitability. A future, targeted baseline field survey for bats was then recommended should these habitats be affected by the OnTI construction works.

Potential	Roosting habitat	Foraging habitat	Commuting habitat
habitat			
suitability			
High	woodlands: any trees with roost	High insect abundance.	Lippor fosturos (with little
	other gaps	Native woodland, trees and	or po artificial lighting
	other gaps.	hedgerows offering abundant	present) providing shelter
	Diverse choice of roosts.	shelter and diverse edge habitat.	and/or foraging
			opportunities and
	Caves, tunnels, mines and ice	Slow flowing or still freshwater	connectivity with other
	houses with humid atmospheres	features with sheltered, vegetated	landscape features
	and sheltered, stable temperature	edges.	including roosting and
	conditions.		foraging habitat.
		Low disturbance from lighting,	
	Low disturbance.	pollutants and human activity.	Includes treelines,
		Desture fields with source	woodland edge,
		Pasture helds with cows.	walls woodland tracks
			road and drainage
			networks and buildings.
Medium	Roost sites and access points in	Moderate insect abundance.	Partly discontinuous
	cracks, crevices and gaps present,		features offering some
	but not ideal due to size,	Native woodland, trees and	shelter and/or foraging
	disturbance, exposure.	hedgerows offering some shelter	opportunities.
		and edge habitat.	
			Continuous features with
		Fast flowing freshwater features	some form of artificial
Low	No suitable roost sites or access	Coniference woodland improved	Discontinuous foaturos
LOW	noints visible	agriculture and built-up areas with	offering no shelter and/or
		low plant diversity and/or insect	isolated from potential
	Less than one tree in 100 has roost	abundance.	roosting and/or foraging
	potential due to age or species.		areas.
		Lack of shelter, poorly connected	
	High disturbance.	to roost sites and commuting	Abundant artificial lighting.
		routes.	
	Direct lighting on features.		
		High disturbance levels from	
		activity	
		activity.	

Table 1. Bat habitat suitability criteria

Field Survey Limitations

The timing of submission of this document has not allowed for a full suite of surveys to be completed in relation to the ornithological interests of the modified OnTI. Similarly, access restrictions at the time of the surveys (April / May 2014) has meant that 6.1 km² of Route Option 1a was unable to be included within both ecology and ornithology surveys.

The data presented within this document has assessed proposed Route Options 1a. Refinement of the modified OnTI route to Route Option 1b occurred during the survey period, and consequently some sections of the finalised Route Option 1b have not been directly assessed in this report, However, for the purposes of this document and the assessments made within the ES Chapter, despite data for the modified OnTI being incomplete, given the largely homogenous nature of the majority of the landscape through which the assessed options pass, this is not deemed to affect the robustness of any assessment made. Habitats surveyed to date are typical of the wider landscape. This is of particular importance for the breeding bird surveys as, although data collected and presented for the first breeding bird survey visit (April / May 2014) might not assess the refined Route Option 1b it will provide an assessment of the species present in the area which may be affected by the development. Given that construction is not proposed to commence until 2016, and that SNH have requested that a full suite of surveys be conducted prior to construction commencing, all data collected in 2014, whether along the finalised route or in proximity to it, is suitable for assessing possible effects to all species of conservation concern throughout the area.

4. Baseline Survey Results

4.1 Desk Study Results *Coastal Birds Results*

Seabird 2000

Seabird 2000 is a complete census of the entire breeding seabird population of Great Britain and Ireland. It was coordinated by the JNCC in partnership with other organisations such as SNH and RSPB. Beginning in 1998 and completed in 2002, Seabird 2000 counted over 8 million breeding seabirds at 3,300 coastal colonies, 900 inland colonies and 170 islands.

Relevant seabird breeding colony records within 3km of the two landfall points considered in the early stages of development prior to the final selection of Inverboyndie were sought from Seabird 2000. Records were received for colonies at five locations (Table 2).

Modified Transmission Infrastructure for Telford, Stevenson and MacColl Wind Farms

Table 2. Seabird 2000 seabird breeding colony records

Location	Approximate Distance to	Approximate Distance to	Species	Number of occupied nests
	Sandend Bay Landfall (km)	Inverboyndie Landfall (km)		
Banff town	13	2	Herring gull	33
Macduff town	15	4	Herring gull	25
Findlater	2	13	Fulmar	123
			Great black-backed gull	2
			Herring gull	115
			Kittiwake	104
Garron Point	1	12	Fulmar	61
			Great black-backed gull	3
			Herring gull	720
			Kittiwake	211
			Shag	27
Redhythe Point	2	10	Fulmar	13
			Great black-backed gull	4
			Herring gull	137
			Kittiwake	198
			Shad	13

Wetland Bird Survey (WeBS)

WeBS is a joint scheme coordinated by the BTO, RSPB and JNCC in association with the Wildfowl and Wetlands Trust (WWT). The scheme monitors non-breeding waterbird populations across the UK to provide a scientific basis for their conservation. The records received from WeBS are 'core counts'. Core counts are coordinated for approximately 2,500 coastal and inland wetland sites throughout the UK. Counts are made monthly, for a range of species, throughout the year.

Relevant wetland bird count data were sought from the WeBS survey area in the Deveron Estuary (Table 3). The estuary at its closest point (southern end) is approximately 1.1 km from the modified OnTI.

Moray Offshore Renewables Limited

Modified Transmission Infrastructure for Telford, Stevenson and MacColl Wind Farms

Table 3. WeBS wetland t years is <1 are not prese.	oird count dat nted, 'uniden	a for the Deve tified gull' als	eron Estuary cou o not presented	unt site, three)	e year period	from May 2007 to	o November 20	10 (species for wl	hich mean peak mont	hly count across five
Bird species (alphabetical order)					Peak monthly	r count per year				Mean peak monthly count across 3 years
	May 2007-M	arch 2008		January 2009.	February 2009		October 2009-I	December 2010		
	Peak count	Month	Number of counts on which recorded (out of 9)	Peak count	Month	Number of counts on which recorded (out of 2)	Peak count	Month	Number of counts on which recorded (out of 10)	
Arctic tern	4	May	. –		-	1		,		1.3
Bar-tailed godwit	1	ı	,	1	1	ı	3	Jan	2	-
Black-headed gull	18	Feb	5			1	54	Mar	8	24
Common gull	1	ı	ı	1	1	ı	20	Oct (2009)	2	6.7
Cormorant	5	Aug	8	6	Jan	,	120	Nov (2009)	6	43.7
Curlew	-	Oct	1	3	Jan		16	Dec	6	6.7
Dunlin	-	Dec	1	1	1	ı	ı	1	1	0.3
Eider	13	Feb	4	2	Jan	2	23	Feb	6	12.7
Goldeneye	16	Nov	9	7	Feb	2	8	Apr	2	10.3
Goosander	5	Oct	9	1	Jan & Feb	2	-	-		2
Great black-backed gull	153	Oct	8	16	Jan	2	300	Jan	6	156.3
Great northern diver	ı	ı	-	I	I	I	2	Jun	2	0.7
Grey heron	10	Feb	8	1	Jan	-	2	Apr	4	5.3
Herring gull	1,000	Nov	6	300	Jan	2	1,351	Nov (2009)	6	883.7
Iceland gull	1	-	-	1	Feb	-	-	I	-	0.3
Lapwing	1	-	-	1	-	I	12	Mar	1	4
Long-tailed duck	ı	ı	-	3	Feb	-	1	Mar	1	1.3
Mallard	107	Nov	6	44	Jan	-	4	Apr	2	51.7
Mute swan	1	May, Sep, Nov & Jan	7	ı	ı		L	May	1	0.7
Oystercatcher	28	Feb	6	14	Jan		63	Jan	6	35
Pink-footed goose	-	-	-		-	I	3	May	1	1
Purple sandpiper	I	1	1	ı	I	1	3	Nov (2009 & 2010) & Mar	3	
Red-breasted merganser	2	Mar	L	1	1	1	4	Oct (2009), Jan, Feb & Jun	4	2
Redshank	108	Dec	7	30	Jan	1	63	Nov (2009)	10	67
Red-throated diver	-	-	-	-	-	-	1	Nov (2010)	1	0.3
Sanderling			-				2	May	1	0.3

Technical Appendix 4.6 A

17

Moray Offshore Renewables Limited

Modified Transmission Infrastructure for Telford, Stevenson and MacColl Wind Farms

	Mean peak monthly count across 3 years			15.7	10.3	0.7
			Number of counts on which recorded (out of 10)	7	9	
	/ count per year		Month	Nov (2009)	Nov (2009)	1
			Peak count	43	28	1
			Number of counts on which recorded (out of 2)	1		-
	Peak monthly	-February 2009	Month	Jan	-	-
		January 2009	Peak count	4	I	I
			Number of counts on which recorded (out of 9)	I	2	1
		arch 2008	Month	-	Dec	Mar
		May 2007-Mi	Peak count	1	3	2
	Bird species (alphabetical order)			Shag	Turnstone	Velvet scoter

Corn Bunting Results

Corn bunting is a red-listed BoCC, listed on the SBL, and noted as a NE LBAP priority species. The species is a scarce resident breeder in north east Scotland where it is at the northern extremity of its breeding range. There are an estimated 550-600 corn bunting territories in Aberdeenshire and Moray. This number comprises 64% of the Scottish population and 6% of the UK population. The northeast Scotland population has declined significantly in the past two decades. Most birds occur in the Buchan plain of Aberdeenshire, now the Scottish stronghold for the species, in several hotspots between Rattray and Rosehearty. Here, densities can reach 21 males/km² and the hotspots are therefore among the most densely populated areas of corn bunting in the UK (Francis and Cook, 2011). Extensive conservation work is being undertaken across Aberdeenshire to benefit this declining species (www.rspb.org.uk/ourwork/projects).

Corn buntings occur in open, lowland arable and mixed farmland. Nests are built on the ground within crops or in dense, grassy vegetation. The following nesting habitats are favoured (Forrester et al., 2007):

- Cereals;
- Set-aside;
- Improved grassland (ungrazed);
- Unimproved grassland (ungrazed);
- Brassica crops;
- Pea crops;
- Bean crops;
- Linseed crops; and
- Bulbs.

The following winter feeding habitats are favoured (Forrester et al., 2007):

- Cereal stubbles;
- Oilseed rape stubbles;
- Livestock feed sites;
- Grain spills;
- Unharvested crops; and
- Newly sown spring cereals.

Corn buntings typically rear two broods per year, first clutches are laid from late-May and second clutches are laid as late as mid-August, thus chicks can still be in the nest well into September (Forrester et al., 2007). Early nests are usually built in autumn-sown cereals or grass managed for silage and later nests in spring-sown cereals. The chick diet is centred on insects (Francis and Cook, 2011).

Corn buntings are broadly sedentary and form flocks from late-October to early-May. In winter the flocks sometimes move locally when deep snow or ploughing of stubble reduces food supplies. The species has very similar breeding and winter distributions (Forrester et al., 2007).

RSPB were consulted (31.08.11) to provide any relevant information on corn bunting presence. No additional consultation was sought with the RSPB regarding the species (Table 4).

Table 4. RSPB corn bunting consultation

Organisation	Consultation response
Hywel Maggs, Conservation Officer for Northeast Scotland,	Hywel Maggs confirmed Aberdeenshire was remaining UK
and Kathleen Sinclair, Assistant Conservation Officer for	stronghold for the species. He agreed that potential
Northeast Scotland, both RSPB	construction impacts on the species would be low and of a
	temporary nature. It was verified that there is no ideal
	season for construction as corn bunting are present all
	year round (31 August 2011).

Raptors

At the time of submission of this Technical Appendix, no response had been returned from the NESRSG

Protected Habitats and Species

The following section details the records received from relevant recording bodies regarding protected species and habitat present within 2 km of the modified OnTI. A summary of these can be seen in Table 5 below within details of records received from NESBReC in tables 6 to 8 and the Botanical Society of Britain and Ireland (BSBI) in Table 9 below.

Table 5. Recording bodies consultation responses

Organisation	Consultation response
Deveron, Bogie and Isla Rivers Charitable Trust	Awaiting response at the time of writing.
District Salmon Fisheries Boards	Directed to the Deveron, Bogie and Isla Rivers Charitable
	Trust. Awaiting response at the time of writing.
NESBReC	Provided data on protected habitats and species within
	the data search area. Tables 6 to 8.
Saving Scotland's Red Squirrels (SSRS)	Advised that all their records are available on NBN Gateway.
SWT	Provided a shapefile containing all SWT reserves and
	protected species records from the data search area.
North East Scotland Bat Group	Advised that all their records are held by NESBReC.
Botanical Society of Britain and Ireland (BSBI)	Records of IUCN red listed species and those present on
	the SBL received for a 2km buffer surrounding route
	option 1. Table 9 below.

North East Scotland Biological Records Centre (NESBReC)

Relevant bird, plant, mammal and fish records within the modified OnTI were sought from the NEBReC. A total of 21 bird species were returned by NEBReC (excluding green-listed birds of conservation concern which do not have other conservation designations associated with them). These are presented showing their associated conservation designations (Table 6). Eight mammal species were found, these are also presented showing their associated conservation designations (Table 7). Fifty-one plant species of conservation concern were returned and these are similarly presented with their associated conservation designations (Table 8).

-	D 1 0				6.11	110 LO TI
Table 6.	Records of	Protected F	Bird Species	within 2 kn	n of the m	odified On H

Species	Annex I of Birds Directive	Schedule 1 of Wildlife and Countryside Act
Barn owl		\checkmark
Barnacle goose	\checkmark	
Black-throated diver	\checkmark	\checkmark
Brambling		\checkmark
Common tern	\checkmark	

Species	Annex I of Birds Directive	Schedule 1 of Wildlife and Countryside Act
Goldeneye		√√ (Part II only)
Golden plover	\checkmark	
Hen harrier	\checkmark	\checkmark
Kingfisher	\checkmark	\checkmark
Merlin	\checkmark	\checkmark
Osprey	\checkmark	\checkmark
Peregrine falcon	\checkmark	\checkmark
Purple sandpiper		\checkmark
Red-throated diver	\checkmark	\checkmark
Redwing		\checkmark
Ruff	\checkmark	\checkmark
Sandwich tern	\checkmark	
Short-eared owl	\checkmark	
Snow bunting		\checkmark
White-tailed eagle	\checkmark	\checkmark
Whooper swan	\checkmark	\checkmark

Table 7. Records of Protected Species (Excluding Birds) within 2 km of the modified OnTI

Mammal and fish		Conservation d	esignat	ion		Grid square
species (alphabetical order)	Schedule 2 of Conservation of Habitats and Species Regulations 2010 (European protected)	Schedule 5 of Wildlife and Countryside Act 1981 (UK-protected)	SBL	NE LBAP priority species	Protection of Badgers Act 1992	presence
Badger	-	-	\checkmark	-	\checkmark	NJ56, NJ66, NJ74, NJ 75,
Chiroptera	\checkmark	-	-	-	-	NJ56, NJ66
Otter	✓	√	V	Species Action addressed through relevant Habitat Action Plan	-	NJ56, NJ65, NJ66, NJ74, NJ75, NJ84
Pipistrellus	\checkmark	-	-	-	-	NJ56, NJ65, NJ66, NJ85
Common pipistrelle	✓	-	V	Species Action addressed through relevant Habitat Action Plan	-	NJ75
Brown long-eared. (Plecotus auritus)	\checkmark	-	\checkmark	-	-	NJ85
Red squirrel	-	✓	~	Dedicated Species Action Plan	-	NJ56, NJ66, NJ75, NJ76, NJ84, NJ85
Water vole	-	\checkmark	\checkmark	Dedicated Species Action Plan	-	NJ74, NJ84,

Table 8. Records of IUCN Red Listed and SBL listed species recorded by the NESBReC as present within 2 km of the modified OnTI

Таха	IUCN Red Listed	SBL Listed
Alopecurus myosuroides		\checkmark
Anagallis arvensis		\checkmark
Arabis alpine		\checkmark
Astragalus danicus	\checkmark	\checkmark
Brassica oleracea		\checkmark

Modified Transmission Infrastructure for Telford, Stevenson and MacColl Wind Farms

Таха	IUCN Red Listed	SBL Listed
Campanula glomerata		\checkmark
Carex maritime	\checkmark	\checkmark
Carum carvi	\checkmark	\checkmark
Centaurea cyanus		\checkmark
Chelidonium majus	\checkmark	\checkmark
Chenopodium bonus-henricus	\checkmark	\checkmark
Cichorium intybus		\checkmark
Coeloglossum viride	\checkmark	
Coronopus squamatus		\checkmark
Diphasiastrum complanatum		\checkmark
Draba incana		\checkmark
Euphorbia helioscopia		\checkmark
Fallopia convolvulus		\checkmark
Filago vulgaris		\checkmark
Galeopsis speciosa	\checkmark	\checkmark
Gentianella campestris	\checkmark	\checkmark
Gnaphalium sylvaticum	\checkmark	\checkmark
Hyoscyamus niger	\checkmark	\checkmark
Iberis amara	\checkmark	
Juniperus communis		\checkmark
Juniperus communis subsp. communis		\checkmark
Linnaea borealis		\checkmark
Lithospermum officinale		\checkmark
Lolium temulentum	\checkmark	
Mentha arvensis		\checkmark
Mertensia maritima	\checkmark	
Papaver argemone	\checkmark	\checkmark
Plantago media		\checkmark
Platanthera bifolia	\checkmark	\checkmark
Pyrola media	\checkmark	\checkmark
Ranunculus arvensis	\checkmark	
Ranunculus sardous		\checkmark
Rosa tomentosa		\checkmark
Salsola kali subsp. kali	\checkmark	\checkmark
Saxifraga hypnoides	\checkmark	\checkmark
Scandix pecten-veneris	\checkmark	
Scleranthus annuus	\checkmark	\checkmark
Sherardia arvensis		\checkmark
Silene noctiflora	\checkmark	\checkmark
Sinapis alba		✓
Sinapis arvensis		\checkmark
Stachys arvensis	\checkmark	\checkmark
Teesdalia nudicaulis	\checkmark	\checkmark

Таха	IUCN Red Listed	SBL Listed
Torilis nodosa		\checkmark
Trifolium micranthum		\checkmark
Viola tricolour subsp. tricolor	\checkmark	\checkmark

Botanical Society of Britain and Ireland

Plant records within the modified OnTI were sought from the BSBI. A total of 41 species were returned from the BSBI. These are presented showing their associated conservation designations (Table 9).

Таха	IUCN Red Listed	SBL Listed
Anagallis arvensis		\checkmark
Astragalus danicus	\checkmark	\checkmark
Centaurea cyanus		\checkmark
Cichorium intybus		\checkmark
Cochlearia officinalis subsp. scotica		\checkmark
Euphorbia exigua	\checkmark	
Euphorbia helioscopia		\checkmark
Euphrasia arctica subsp. borealis	\checkmark	
Euphrasia confuse	\checkmark	
Euphrasia foulaensis	\checkmark	
Euphrasia micrantha	\checkmark	
Euphrasia tetraquetra	\checkmark	
Fallopia convolvulus		\checkmark
Fumaria capreolata		\checkmark
Gentianella campestris	\checkmark	\checkmark
Glebionis segetum	\checkmark	
Gnaphalium sylvaticum	\checkmark	\checkmark
Hyoscyamus niger	\checkmark	\checkmark
Juniperus communis		\checkmark
Juniperus communis subsp. communis		\checkmark
Linnaea borealis		\checkmark
Lithospermum officinale		\checkmark
Mentha arvensis		\checkmark
Mertensia maritima	\checkmark	
Papaver argemone	\checkmark	\checkmark
Platanthera bifolia	\checkmark	\checkmark
Poterium sanguisorba		\checkmark
Pyrola media	\checkmark	\checkmark
Radiola linoides	\checkmark	
Salsola kali subsp. kali	\checkmark	\checkmark
Scandix pecten-veneris	\checkmark	
Scleranthus annuus	\checkmark	\checkmark
Sherardia arvensis		\checkmark
Silene noctiflora	\checkmark	\checkmark
Sinapis alba		\checkmark
Sinapis arvensis		\checkmark
Spergula arvensis	\checkmark	
Stachys arvensis	\checkmark	\checkmark
Trifolium micranthum		\checkmark
Viola canina	\checkmark	
Viola tricolor subsp. tricolor	\checkmark	\checkmark

Scottish Biodiversity List and North East Local Biodivesity Action Plan

Priority habitats, birds and mammals most likely to occur along the length of the modified OnTI and surrounding area were sought from the SBL and NE LBAP. Twenty-five priority habitats (Table 10) and 48 priority bird and mammal species (Table 11) were found.

Table 10. SBL and NE LBAP priority habitats

Habitat type	NE LBAP priority/SBL habitat	NE Habitat Action Plan
Coastal	· · · · ·	•
Coastal sand dunes	SBL /NE priority	Coastal sand dunes and shingle
Coastal vegetated shingle	SBL /NE priority	Coastal sand dunes and shingle
Maritime cliff and slope	SBL/NE priority	Maritime cliff and slope
Coastal heath and shrub	Locally important	Coastal heath and scrub
Farmland and grassland		
Cereal field margins	SBL/NE priority	Farmland/field margins and
		boundary habitats
Arable and cultivated land	Locally important	Farmland
Boundary and linear feature including	SBL/NE priority	Field margins and boundary
hedgerows		habitats
Lowland meadow (neutral grassland)	SBL/NE priority	Species-rich grassland
Improved grassland	Locally important	Species-rich grassland
Woodland	-	
Lowland wood pastures and parkland	SBL/NE priority	Wood pasture, parkland and
		boundary trees
Lowland Birch woodland	Locally important	Broadleaved woodland
Scrub	Locally important	Broadleaved woodland
Wet woodland	NE priority	Wet and riparian woodland
Riparian woodland	Locally important	Wet and riparian woodland
Planted coniferous woodland	Locally important	Planted coniferous woodland
Bog		
Lowland raised bog	NE priority	Lowland raised bog
Blanket bog	NE priority	Blanket bog
Wetland and Freshwater		
Reedbeds	NE priority	Wetland
Fens	NE priority	Wetland
Coastal and floodplain grazing marsh	NE priority	Wetland
Fen, carr, marsh, swamp and reedbed	Locally important	Wetland
Rivers and burns	Locally important	Rivers and burns
Standing open water	Locally important	Lochs and ponds
Ponds	Locally important	Lochs and ponds
Urban		
Urban	Locally important	Urban areas

Table 11. NE LBAP priority birds and mammals

Species (alphabetical order)	Habitat type	NE Species Action Plan	
		Species action addressed through	Species with dedicated North
		relevant Habitat	East Species
		Action Plan	Action Plan
SBL Species			
Black grouse	Montane, heath and bog	\checkmark	
Brown hare	Farmland and grassland	\checkmark	

Species (alphabetical order)	Habitat type	NE Species Action Plan		
		Species action addressed through relevant Habitat Action Plan	Species with dedicated North East Species Action Plan	
SBL Species	·	•		
Bullfinch	Woodland	\checkmark		
Capercaillie	Woodland	\checkmark		
Common scoter	Coastal and marine	\checkmark		
Corn bunting	Farmland and grassland	\checkmark		
Grey partridge	Farmland and grassland	\checkmark		
Linnet	Farmland and grassland	\checkmark		
Otter	Wetland and freshwater	\checkmark		
Pipistrelle bat	Woodland	\checkmark		
Red squirrel	Woodland		\checkmark	
Reed bunting	Wetland and freshwater, mountain, heath and bog	\checkmark		
Scottish crossbill	Woodland	\checkmark		
Skylark	Farmland and grassland	\checkmark		
Song thrush	Woodland	\checkmark		
Spotted flycatcher	Woodland	\checkmark		
Tree sparrow	Woodland	\checkmark		
Water vole	Wetland and freshwater		\checkmark	
UK species of conservation con	cern			
Arctic tern	Coastal and marine	\checkmark		
Barn owl	Farmland and grassland	\checkmark		
Bearded tit	Freshwater and wetland	\checkmark		
Common tern	Coastal and marine	\checkmark		
Crested tit	Woodland	\checkmark		
Curlew	Coastal and marine	\checkmark		
Daubenton's bat	Woodland/freshwater/farming and grassland		\checkmark	
Dotterel	Montane, heath and bog	\checkmark		
Eider	Coastal and marine	\checkmark		
Golden eagle	Montane, heath and bog	\checkmark		
Golden plover	Montane, heath and bog	\checkmark		
Goldeneye	Freshwater and wetland	\checkmark		
Grasshopper warbler	Farming and grassland	✓		
Hen harrier	Montane, heath and bog	✓		
Kestrel	Montane, heath and bog	\checkmark		
Lapwing	Farmland and grassland	✓		
Lesser redpoll	Woodland	✓		
Little tern	Coastal and marine	✓		
Redshank	Coastal and marine	✓		
Sandwich tern	Coastal and marine	\checkmark		
Slavonian grebe	Coastal and marine	✓		
Snipe	Freshwater and wetland	✓		
Snow bunting	Montane, heath and bog	✓		
Spotted crake	Freshwater and wetland	✓		
Tree pipit	Freshwater and wetland	\checkmark		

Species (alphabetical order)	Habitat type	NE Species Action Plan	
		Species action Species with	
		addressed through	dedicated North
		relevant Habitat	East Species
		Action Plan	Action Plan
SBL Species			
Twite	Farming and grassland	\checkmark	
Water rail	Freshwater and wetland	\checkmark	
Water shrew	Freshwater and wetland	\checkmark	
Yellowhammer	Farming and grassland	\checkmark	
Locally important species			
Ptarmigan	Montane, heath and bog	\checkmark	

National Biodiversity Network (NBN)

The NBN was formed in 2000 and is a partnership of many UK conservation organisations. Previously, there was a vast amount of biodiversity data gathered over the years by various organisations and individuals, held in various formats. Now, the NBN acts as a 'data warehouse' for a broad range of this biodiversity information.

Relevant bird, mammal and fish records within the modified OnTI were sought from the NBN. A total of 79 bird species were returned from the data search of the NBN (excluding green-listed birds of conservation concern which do not have other conservation designations associated with them). These are presented showing their six associated conservation designations (Table 12). Ten mammal species and one fish species were found, these are similiarly presented with their five associated conservation designations (Table 13).

Bird species	Conservation designation							
(alphabetical order)	Annex I of Birds Directive (European protected)	Schedule 1 of Wildlife and Countryside Act 1981 (UK- protected)	Red-listed Bird of Conservation Concern (BoCC)	Amber-listed Bird of Conservation Concern (BoCC)	SBL Listed Species	NE LBAP priority species		
Barn owl		√			~	\checkmark		
Black guillemot				\checkmark				
Black-headed gull					~			
Brambling		\checkmark			\checkmark			
Bullfinch					\checkmark	\checkmark		
Common crossbill		\checkmark						
Common gull				\checkmark				
Common sandpiper				~				
Cuckoo			\checkmark		\checkmark			
Curlew				\checkmark	~	\checkmark		
Corn bunting			√		~	\checkmark		
Corncrake	√	√	\checkmark					
Dunlin			\checkmark		\checkmark			
Dunnock				\checkmark	~			
Eider				\checkmark		\checkmark		
Fieldfare		\checkmark						
Fulmar				\checkmark				
Gannet				\checkmark				
Golden plover	\checkmark			\checkmark	\checkmark			
Grasshopper warbler			\checkmark		\checkmark	~		

Table 12. NBN bird records (in BNG NJ56, NJ65, NJ66, NJ74, NJ75, NJ76, NJ84, NJ85, and NJ94 squares)

Bird species	Conservation designation						
(alphabetical order)	Annex I of Birds Directive (European protected)	Schedule 1 of Wildlife and Countryside Act 1981 (UK- protected)	Red-listed Bird of Conservation Concern (BoCC)	Amber-listed Bird of Conservation Concern (BoCC)	SBL Listed Species	NE LBAP priority species	
Great black-				\checkmark			
backed gull							
Green				\checkmark			
woodpecker							
Grey partridge			~		~	~	
Grey wagtail				✓			
Greylag goose				\checkmark			
Guillemot				\checkmark			
Herring gull			\checkmark		\checkmark		
House martin				\checkmark			
House sparrow			\checkmark		\checkmark		
Kestrel				\checkmark	\checkmark	\checkmark	
Kingfisher	\checkmark	\checkmark		\checkmark	~		
Kittiwake				\checkmark			
Lapwing			\checkmark		~	√	
Lesser black-				\checkmark			
backed gull							
Lesser redpoll			\checkmark		\checkmark	\checkmark	
Linnet			\checkmark		~	√	
Little egret	√			\checkmark			
Little grebe				\checkmark			
Mallard				\checkmark			
Meadow pipit				\checkmark			
Mistle thrush				\checkmark			
Oystercatcher				\checkmark			
Pink-footed				\checkmark			
goose							
Puffin				\checkmark			
Quail		\checkmark		\checkmark			
Razorbill				\checkmark			
Red grouse				\checkmark	\checkmark		
Red-backed	\checkmark	\checkmark	√		✓		
shrike							
Redshank				\checkmark		\checkmark	
Redwing		\checkmark	√		✓		
Reed bunting				\checkmark	\checkmark	\checkmark	
Ring ouzel			√		✓		
Ringed plover				\checkmark			
Sand martin				\checkmark			
Sandwich tern	\checkmark			\checkmark	\checkmark	\checkmark	
Shag				\checkmark			
Shelduck				\checkmark			
Short-eared owl	\checkmark			\checkmark	~		
Skylark			\checkmark		1	\checkmark	
Snipe				\checkmark	1	\checkmark	
Song thrush	1	İ	✓		~	✓	
Spotted			\checkmark		~	✓	
flycatcher							
Starling			\checkmark		\checkmark		

Moray Offshore Renewables Limited

Modified Transmission Infrastructure for Telford, Stevenson and MacColl Wind Farms

Bird species	Conservation designation					
(alphabetical order)	Annex I of Birds Directive (European protected)	Schedule 1 of Wildlife and Countryside Act 1981 (UK- protected)	Red-listed Bird of Conservation Concern (BoCC)	Amber-listed Bird of Conservation Concern (BoCC)	SBL Listed Species	NE LBAP priority species
Stock dove				\checkmark		
Swallow				\checkmark		
Swift				\checkmark		
Teal				\checkmark		
Tree sparrow			\checkmark		\checkmark	\checkmark
Tree pipit			\checkmark		\checkmark	\checkmark
Tufted duck				\checkmark		
Twite			\checkmark		\checkmark	\checkmark
Wheatear				\checkmark		
Whinchat				\checkmark		
Whitethroat				\checkmark		
Willow warbler				\checkmark		
Woodcock				\checkmark	\checkmark	
Wood warbler			\checkmark		\checkmark	
Yellow wagtail			\checkmark		\checkmark	
Yellowhammer			\checkmark		\checkmark	\checkmark

Table 13. NBN protected species records and the relevant BNG squares in which they have historically been recorded

Mammal species		Conservation design	nation			NBN grid
(alphabetical order)	Schedule 2 of Conservation of Habitats and Species Regulations 2010 (European protected)	Schedule 5 of Wildlife and Countryside Act 1981 (UK- protected)	SBL	NE LBAP priority species	Protection of Badgers Act 1992	square presence
Badger	-	-	\checkmark	-	\checkmark	NJ 94
Otter	V	\checkmark	~	Species Action addressed through relevant Habitat Action Plan	-	NJ56, NJ65, NJ66. NJ75, NJ84, NJ94
Red squirrel	-	4	V	Dedicated Species Action Plan	-	NJ56, NJ65, NJ66. NJ74, NJ75, NJ76, NJ84, NJ85, NJ94
Water vole	-	\checkmark	~	Dedicated Species Action Plan	-	NJ74, NJ84, NJ85, NJ94
Pine marten	-	\checkmark	~	-	-	NJ56, NJ66, NJ75
Atlantic Salmon <i>(Salmo salar)</i>	-	-	~	Species Action addressed through relevant Habitat Action Plan	-	NJ74, NJ85, NJ94
Common Pipistrelle (Pipistrellus pipistrellus)	V	-	~	Species Action addressed through relevant Habitat Action Plan	-	NJ75
Daubenton's (Myotis daubentonii)	\checkmark	-	~	-	-	NJ94
Soprano Pipistrelle (Pipistrellus pygmaeus)	✓	-	\checkmark	Species Action addressed through relevant Habitat Action Plan	-	NJ85
Chiroptera	✓	-	-	-	-	NJ56, NJ65, NJ75, NJ84
Wild cat	\checkmark	\checkmark	\checkmark	-	-	NJ75

5. Field Survey Results

5.1 Ornithological Surveys

Winter Bird Surveys

A total of nineteen bird species were recorded during the course of the winter walkover surveys (Table 14). Of these, four (long-tailed duck, red-throated diver, redwing and whooper swan) are listed on Annex I of the Birds Directive and on Schedule 1 of the Wildlife and Countryside Act 1981. In addition, golden plover, which is also listed on Annex I of the Birds Directive, was also recorded in November 2013 only. The majority of the remaining species were recorded in low numbers and/or infrequently. However, herring gull, starling, tree sparrow and yellowhammer, which are all red-listed BoCC, were all recorded in relatively high numbers (peak counts of 400, 594, 144 and 164, respectively).

Bird species	Conservation designation							
(alphabetical order)	Annex I of Birds Directive (European protected)	Schedule 1 of Wildlife and Countryside Act 1981 (UK- protected)	Red-listed Bird of Conservation Concern (BoCC)	Amber-listed Bird of Conservation Concern (BoCC)	SBL Listed Species	NE LBAP priority species	Peak count	Number of visits on which recorded
Corn bunting			\checkmark		\checkmark	\checkmark	15 (Mar)	3
Dunnock				\checkmark	\checkmark		3 (Nov)	1
Golden plover	~			\checkmark	\checkmark	~	134 (Mar)	1
Greylag goose				\checkmark			10 (Mar)	1
Herring gull			\checkmark		\checkmark		400 (Mar)	3
House sparrow			\checkmark		\checkmark		62 (Mar)	3
Lapwing			\checkmark		\checkmark	\checkmark	20 (Feb)	2
Linnet			\checkmark		\checkmark	\checkmark	53 (Apr)	3
Long-tailed duck		\checkmark					2 (Mar)	1
Pink-footed goose		\checkmark		\checkmark			60 (Nov)	1
Red-throated diver	\checkmark	~		\checkmark	\checkmark			
Redwing		\checkmark	\checkmark		\checkmark		1 (Apr)	1
Skylark			\checkmark		\checkmark	\checkmark	96 (Mar)	3
Song thrush			\checkmark		\checkmark	\checkmark	3 (Mar)	3
Starling			\checkmark		\checkmark	\checkmark	594 (Nov)	3
Tree sparrow			\checkmark		\checkmark	\checkmark	144 (Mar/Apr)	3
Twite			\checkmark		\checkmark	\checkmark	11 (Nov)	1
Whooper swan	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	1 (Mar)	1
Yellowhammer			\checkmark		\checkmark	\checkmark	164 (Mar/Apr)	3

Table 14. Species recorded during winter walkover surveys, including peak counts for each

Breeding Bird Surveys

At the time of writing this Technical Appendix, breeding bird surveys are on-going, with a single visit currently completed along Route Options 1a. This survey included the route to the potential Sandend Bay landfall location which has since been scoped out. However, for the purposes of providing a breadth of data for the modified OnTI and the surrounding area, these results have been included within this report. Full results of the

breeding bird surveys, including the results of territory analysis, will be provided within a report to be provided in July following submission of this ES including all results for refined Route Option 1b.

In summary, however, a total of 57 species were recorded during the first of the 2014 breeding bird surveys (Table 15). A single osprey, which is listed on Annex I of the Birds Directive and on Schedule 1 of the Wildlife and Countryside Act 1981, was observed flying overhead during this survey. In addition, two flocks of golden plover (numbering 120 and 28 birds), which are listed on Annex I, were also recorded flying high overhead. Six golden plover were also recorded on the ground but were not observed to be displaying any evidence of breeding. A total of 18 singing corn buntings were encountered. The remaining species are, in general, common and widespread. Figure 4.6-3 shows a summary of the corn bunting records recorded along Route Option 1a to the proposed landfall at Inverboyndie.

	Table 15. List of spe	cies recorded to date (single visit) during breeding bird survey programme	
--	-----------------------	--	--

Bird species		Conservation designation						
(alphabetical order)	Annex I of Birds Directive (European protected)	Schedule 1 of Wildlife and Countryside Act 1981 (UK- protected)	Red-listed Bird of Conservation Concern (BoCC)	Amber-listed Bird of Conservation Concern (BoCC)	SBL Listed Species	NE LBAP priority species		
Blackbird								
Blackcap								
Blue tit								
Bullfinch					~	~		
Buzzard								
Carrion crow								
Chiffchaff								
Chaffinch								
Coal tit								
Cormorant								
Curlew				\checkmark	\checkmark	\checkmark		
Corn bunting			\checkmark		~	\checkmark		
Dunnock				\checkmark	~			
Goldcrest								
Golden plover	\checkmark			\checkmark	\checkmark	\checkmark		
Goldfinch								
Great spotted								
woodpecker								
Great tit								
Greenfinch								
Grey heron								
Greylag goose				\checkmark				
Grey partridge			\checkmark		~	~		
Grey wagtail				\checkmark				
Herring gull			\checkmark		~			
House sparrow			\checkmark		~			
Kestrel				\checkmark	✓	✓		
Lapwing			√		~	✓		
Lesser redpoll			~		~	√		
Linnet			\checkmark		~	~		
Mallard				\checkmark				
Magpie								
Meadow pipit				~				
Osprey	\checkmark	\checkmark		\checkmark	\checkmark			
Oystercatcher				✓				

Modified	Transmission	Infrastructure	for Telford.	Stevenson	and MacColl	Wind Farms
mouniou	in an official	initia dottar o	Tor Torrora,	01010113011		willia i ai ilia

Bird species	Conservation designation							
(alphabetical order)	Annex I of Birds Directive (European protected)	Schedule 1 of Wildlife and Countryside Act 1981 (UK- protected)	Red-listed Bird of Conservation Concern (BoCC)	Amber-listed Bird of Conservation Concern (BoCC)	SBL Listed Species	NE LBAP priority species		
Pheasant								
Pied wagtail								
Red-legged								
partridge								
Reed bunting				\checkmark	\checkmark	\checkmark		
Robin								
Rook								
Sand martin				\checkmark				
Sedge warbler								
Siskin								
Sparrowhawk								
Skylark			\checkmark			\checkmark		
Snipe				~		\checkmark		
Song thrush			\checkmark		√	\checkmark		
Starling			\checkmark		\checkmark			
Stock dove				\checkmark				
Swallow				\checkmark				
Tree sparrow			\checkmark		\checkmark	\checkmark		
Wheatear				\checkmark				
Whitethroat				\checkmark				
Willow warbler				\checkmark				
Wood pigeon								
Wren								
Yellowhammer			\checkmark		\checkmark	\checkmark		

Coastal Bird Surveys

At the time of writing this Technical Appendix, coastal bird surveys are on-going, with a single visit currently completed. Full results of these surveys will be presented within a report to be provided in July following submission of this ES.

A total of twenty species were recorded at the proposed Inverboyndie landfall option. These are shown in Table 16. Four species (great northern diver, red-throated diver, sandwich tern and whimbrel) are listed on Annex I, while six (common scoter, great northern diver, long-tailed duck, red-throated diver, whimbrel and white-billed diver) are listed on Schedule 1 of the Wildlife and Countryside Act 1981. White-billed divers are uncommon in British waters, with the area around Banff thought to be an important wintering ground for the species (Baxter *et al.*, 2013). The likely effects on this species are considered in the Environmental Statement.

Table 16. List of species recorded to date at Inverbo	yndie landfall point option	i, including numbers of eac	h present
---	-----------------------------	-----------------------------	-----------

Bird species		Conservation designation									
(alphabetical order)	Annex I of Birds Directive (European protected)	Schedule 1 of Wildlife and Countryside Act 1981 (UK- protected)	Red-listed Bird of Conservation Concern (BoCC)	Amber-listed Bird of Conservation Concern (BoCC)	SBL Listed Species	NE LBAP priority species	Number recorded				
Common gull				\checkmark			6				
Common scoter		\checkmark	\checkmark		\checkmark	\checkmark	2				
Eider				\checkmark		\checkmark	8				
Gannet				\checkmark			1				
Great black-				\checkmark			2				

backed gull							
Great northern	\checkmark	\checkmark		\checkmark	\checkmark		1
diver							
Grey heron							1
Guillemot				\checkmark			7
Herring gull			\checkmark		\checkmark		292
Kittiwake				\checkmark			1
Long-tailed duck		\checkmark					9
Oystercatcher				\checkmark			14
Razorbill				\checkmark			4
Red-throated	\checkmark	\checkmark		\checkmark	\checkmark		14
diver							
Ringed plover				\checkmark			2
Sandwich tern	\checkmark			\checkmark	\checkmark	\checkmark	65
Shag				\checkmark			7
Shelduck				\checkmark			1
Whimbrel	\checkmark	\checkmark		\checkmark			9
White-billed		\checkmark					1
diver							

5.2 Phase 1 Habitat Surveys

Baseline field survey results show that the habitat within the modified OnTI comprises an intensively managed, open landscape of predominantly arable land and improved grassland, with a small number of built up areas present, particularly surrounding the landfall studied in the north. Pockets of both plantation and semi-nature woodland are present scattered along the length of the modified OnTI. A total of 23 Phase 1 Habitat types were recorded within the c.13.4 km² of the cable route corridor surveyed. Due to access restrictions at the time of the survey, a further c5 km² within the survey area was unable to be accessed. However, as previously mentioned within the limitation section, this is not thought to detract from the robustness of the survey given the largely homogenous nature of the habitats found, and the requirement for additional surveys to be completed prior to construction commencing in 2016.

Phase 1 Habitat results are presented below (Table 17) with three associated conservation designations considered to give the findings of the survey perspective in relation to the likely effects associated with the modified OnTI. Target notes recorded during the course of the survey highlighting areas of particular interest or importance are presented in Table 19.

Phase 1 habitat	Potentially overlaps with Annex I of Habitats Directive (European protected)	Potentially overlaps with SBL habitat	Potentially overlaps with NE LBAP priority habitat	Total area surveyed within cable route corridor (ha)	Total % of cable route corridor surveyed (descending order)
Arable land	-	Arable field margins	Farmland Field margins and boundary habitats	943.93	51. 2
Improved grassland	-	Coastal and floodplain grazing marsh	Farmland Field margins and boundary habitats	122.50	6.7

Table 17. Phase 1 Habitats recorded within the Ecology Survey Area, their quantity and relevant conservation designation.

Phase 1 habitat	Potentially overlaps with Annex I of Habitats Directive (European protected)	Potentially overlaps with SBL habitat	Potentially overlaps with NE LBAP priority habitat	Total area surveyed within cable route corridor (ha)	Total % of cable route corridor surveyed (descending order)
Semi-natural broadleaved woodland		Lowland mixed deciduous woodland Lowland wood- pastures and parkland Upland birchwoods Upland mixed ashwoods Upland oakwood Wet woodland	Wet and riparian woodland Wood pasture, parkland and wayside trees	67.40	3.7
Plantation coniferous	-	-	-	47.26	2.6
Road	-	-	-	38.41	2.1
Marshy grassland	-	Lowland meadows	-	32.91	1.8
		Purple moor grass and rush pastures			
Semi-improved neutral grassland	-	Lowland meadows	Farmland Field margins and boundary	32.48	1.8
Bare ground	-	-	-	12.71	0.7
Amenity grassland	-	-	Urban areas	10.15	0.6
Buildings	-	-	Urban areas	6.70	0.4
Semi-improved acid grassland	-	Lowland dry acid grassland	Lowland dry acid grassland	5.57	0.3
Plantation broadleaved woodland	-	Lowland mixed deciduous woodland Lowland wood- pastures and parkland Upland mixed ashwoods Upland oakwood	Wood pasture, parkland and wayside trees	5.38	0.3
Donce (continues)		Wet woodland		4.24	0.2
Vense/continuous scrub	-	Lowland mixed deciduous woodland Lowland wood- pastures and parkland		4.34	0.2

Modified Transmission Infrastructure for Telford, Stevenson and MacColl Wind Farms

Phase 1 habitat	Potentially overlaps with Annex I of Habitats Directive (European protected)	Potentially overlaps with SBL habitat	Potentially overlaps with NE LBAP priority habitat	Total area surveyed within cable route corridor (ha)	Total % of cable route corridor surveyed (descending order)
		Upland birchwoods Upland mixed ashwoods Upland oakwood Wet woodland			
Tall ruderal herb and	-	-	Field margins and boundary	2.70	0.1
Running water	-	Rivers	Rivers and burns	2.58	0.1
Wet modified bog	Degraded raised bogs still capable of natural regeneration	Blanket bog Lowland raised bog	Lowland raised bog	1.85	0.1
Quarry	-	-	-	1.56	0.1
Plantation mixed woodland	- Oligotrophis to	Lowland mixed deciduous woodland Lowland wood- pastures and parkland Upland birchwoods Upland mixed ashwoods Upland oakwood Wet woodland	Wood pasture, parkland and wayside trees	1.06	0.1
Standing water	Chigotrophic to mesotrophic standing waters with vegetation of the <i>Littorelletea</i> <i>uniflorae</i> and/or of the <i>Isoëto-</i> <i>Nanojuncetea</i> Hard oligo- mesotrophic waters with benthic vegetation of <i>Chara</i> spp.	Ponds Reedbeds Lakes	wetiand	0.92	0.1
Parkland – mixed trees	-	Lowland mixed deciduous woodland Lowland wood- pastures and parkland	Wood pasture, parkland and wayside trees	0.29	<0.1

Modified	Transmission	Infrastructure	for Telford	Stevenson	and MacColl	Wind Farms
Mounicu	110113111331011	inin astructure	TOL LCHOLD,	31070113011		vvinu i arris

Phase 1 habitat	Potentially overlaps with Annex I of Habitats Directive (European protected)	Potentially overlaps with SBL habitat	Potentially overlaps with NE LBAP priority habitat	Total area surveyed within cable route corridor (ha)	Total % of cable route corridor surveyed (descending order)
		Upland birchwoods Upland mixed ashwoods Upland oakwood Wet woodland			
Inland Cliff	-	Inland rock outcrop and scree habitat	-	0.18	<0.1
Semi-natural mixed woodland	-	Lowland mixed deciduous woodland Lowland wood- pastures and parkland Upland birchwoods Upland mixed ashwoods Upland oakwood Wet woodland	Wood pasture, parkland and wayside trees	0.04	<0.1
Scattered scrub	-	-	-	0.02	<0.1
Note:	1	1	1	1	

1. No access was available to c.489 ha (26.7%) of the proposed route at the time of survey.

2. Other habitats not classified within the Phase 1 Habitat nomenclature occupied c.6.03 ha (0.3%) of the survey area. All such habitats were target noted recording the use of the area.

Field boundaries and woodland edges form important linear features in otherwise open, homogonous landscapes such as the arable land and improved grassland within the modified OnTI. Native, species-rich hedgerows were widespread, comprising rowan (*Sorbus aucuparia*), silver birch (*Betula pendula*), hawthorn (*Crataegus monogyna*), hazel (*Corylus avellana*) and elder (*Sambucus nigra*). Fences, with or without hedgerows, were common, and small number of dry stone walls existed.

Phase 1 Habitats within the modified OnTI were summarised into the following habitat categories:

- Arable land and grassland, 61.8 %;
- Woodland, 6.7 %;
- Built-up areas, 4.1 %
- Scrub, tall herb and fern, 0.4 %
- Water and wetland features, 0.2 %;
- Mire, 0.1 %; and,
- Rock and quarry, 0.1%.

Key Phase 1 Habitats within these categories are summarised below along with additional target notes corresponding to features of interest/importance in Table 19. A visual representation of the mosaics of habitats present along the modified OnTI can be seen in Figure 4.6-5.

Arable Land and Grassland

The prevalence of this habitat category (61.8%) underscores the predominance of agriculture within the landscape of the modified OnTI. Arable land (51.2%) was the most widespread Phase 1 Habitat, comprising mostly barley, wheat, oilseed rape, oats, silage, potatoes and short-term grazing. Improved grassland (6.7%) was the second most widespread habitat. Marshy grassland (1.8%), semi-improved neutral grassland (1.8%) and semi-improved acid grassland (0.3%) comprised the remaining Phase 1 Habitats within this category.

Arable land and grassland within the modified OnTI potentially overlaps with six SBL habitats (arable field margins; coastal and floodplain grazing marsh; lowland meadows; lowland dry acid grassland; maritime cliff and slopes; and purple moor grass and rush pastures) and three NE LBAP priority habitats (farmland; and field margins and boundary habitats).

Woodland

The limited abundance of this habitat category (6.7%) reflects the openness of the landscape within the modified OnTI. Plantation woodland (3.0%) and semi-natural woodland (3.7%) are equally represented across the area. Plantation coniferous (2.6%), broadleaved (0.3%) and mixed (0.1%) woodland mainly occurred as commercial forestry blocks or shelter belts, or along roadsides and around farm buildings. Semi-natural broadleaved (3.7%) and semi-natural mixed (<0.1%) woodland mostly occurred as small, disconnected linear features. Woodlands were usually mature and comprised the following species: Sitka spruce (*Picea sitchensis*), lodgepole pine (*Pinus contorta*), Scots pine (*Pinus sylvestris*), silver birch, sycamore (*Acer pseudoplatanus*), pedunculate oak (*Quercus robur*), rowan, goat willow (*Salix caprea*) and wych elm (*Ulmus glabra*).

Woodland within the modified OnTI potentially overlaps with seven SBL habitats (lowland mixed deciduous woodland; wood-pastures and parkland; birchwoods; upland mixed ashwoods; upland oakwood; wet woodland; and native pinewoods) and two NE LBAP priority habitats (wood pasture, parkland and wayside trees; and wet and riparian woodland).

Built-up Areas

The low occurrence of this habitat category (4.1%) highlights the largely rural nature of the landscape within the modified OnTI. Roads were the most abundant feature in the category (2.1%), with buildings (0.4%), bare ground (0.7%), amenity grassland (0.6%) and 'other' areas(including parkland – mixed trees) (0.3%) contributing to the overall total land use for this category.

Built-up areas within the modified OnTI potentially overlap with one NE LBAP priority habitat; urban areas.

Scrub, Tall Herb and Fern

This category occupies approximately 0.4% of the total area surveyed. Tall ruderal herb and fern (0.1%) was found bordering linear features such as field boundaries and watercourses. Rosebay willow-herb (*Epilobium angustifolium*) was the most widespread species, alongside common nettle (*Urtica dioica*) and broadleaved dock (*Rumex obtusifolius*). Scattered (<0.1%) and dense/continuous (0.2%) scrub occurred on many field verges, along drainage ditches and among grazed fields. Common gorse (*Ulex europaeus*) was the most frequent species, with occasional rowan, goat willow and silver birch seedlings interspersed.

Scrub, tall herb and fern within the modified OnTI potentially overlaps with seven SBL habitats (lowland mixed deciduous woodland; lowland wood-pastures and parkland; native pinewoods; upland birchwoods; upland mixed ashwoods; upland oakwood; and wet woodland) and one NE LBAP priority habitat (field margins and boundary habitats).

Mire

Mire habitats accounted for only 0.1% of Phase 1 Habitats found within the modified OnTI, with only wetmodified bog habitat recorded and most closely matches the M15 *Trichophorum germanicum – Erica tetralix* wet heath community.

This habitat potentially overlaps with three Annex I habitats (degraded raised bogs still capable of natural regeneration; blanket bog; and depressions on peat substrates of the Rhynchosporion), two SBL habitats (blanket bog and lowland raised bog) and two NE LBAP priority habitats (lowland raised bog; and wetland).

Water and Wetland Features

Due to issues surrounding lone working near water and also unstable, soft ground, surveys of water and wetland features were restricted to areas considered safe for lone access. Running water (0.1%) was common within the modified OnTI, however much of this was associated with small burns and tributaries draining the farmland to larger watercourses outwith the survey area. One main watercourse is present along the modified OnTI; the River Deveron which flows south to north to discharge into the Moray Firth at Banff.

Standing water (0.1%) occurred as ponds; species associated within these small waterbodies included common clubrush (*Scirpus lacustris*), pondweed (*Potamogeton spp.*), duckweed (*Lemna minor*), branched bur-reed (*Sparganium erectum*) and bulrush (*Typha latifolia*).

Water and wetland features within the modified OnTI potentially overlap with three Annex I habitats (hard oligo-mesotrophic waters with benthic vegetation of *Chara spp.*; water courses of plain to montane levels with *Ranunculion fluitantis* and *Callitricho-Batrachion* vegetation; and oligotrophic to mesotrophic standing waters with vegetation of the *Littorelletea uniflorae* and/or of the *Isoëto-Nanojuncetea*), four SBL habitats (ponds; reedbeds; rivers; and purple moor grass and rush pastures) and three NE LBAP priority habitats (rivers and burns; wetland; and field margins and boundary habitats).

Rock and Quarry

Two areas of limited quarry habitat (0.1%) occurred within the modified OnTI, while inland cliff makes up <0.1% of the mapped habitats.

5.3 Protected Species Surveys

Table 18 below outlined the findings of the protected species surveys conducted along the length of the modified OnTI. As with the Phase 1 Habitat survey, not all areas of the corridor were able to be assessed due to access restrictions during the survey period. In summary, the following signs of protected mammals were recorded: 161 counts of badger presence; seven locations containing indicative sign of otter; two locations with signs indicative of red squirrel; and 37 counts of signs of water vole. Records of protected species presence are visually represented in Figure 4.6-6 showing the utilisation of the corridor by these species. Badger sett locations, due to their potentially sensitive nature, can be seen in the Confidential Annex to this document and the associated Figure 4.6-7.

Species	Easting	Northing	Field evidence	Sign Count	Details
Badger	382460	844249	latrine	2	Path and latrines. Recent
Badger	382773	845238	latrine	4	Recent
Badger	384060	845338	latrine	2	Recent
Badger	383112	845364	latrine	7	Some recent
Badger	383995	845653	latrine	2	Recent
Badger	380409	847761	latrine	5	Recent
Badger	379079	849612	latrine	8	Some recent
Badger	379335	849619	latrine	5	-
Badger	378799	850380	latrine	2	Recent latrines / path (multiple)
Badger	377365	852908	latrine	5	Recent
Badger	377125	853394	latrine	1	Recent
Badger	371111	859885	latrine	19	Very large latrine area
Badger	370911	860374	latrine	1	Recent
Badger	369799	861683	latrine	1	Recent
Badger	366676	861896	latrine	1	Recent
Badger	366650	861981	latrine	10	2 recent latrines
Badger	365737	862390	latrine	1	Recent
Badger	360739	863936	latrine	1	Old
Badger	366752	864243	latrine	1	Dung in latrine recent
Badger	359825	864296	latrine	1	Droppings in latrine recent
Badger	359250	864493	latrine	5	2 old, 3 recent
Badger	358635	864668	latrine	3	1 recent
Badger	356451	865060	latrine	4	Recent
Badger	356269	865067	latrine	12	Several recent
Badger	381975	843967	run	1	-
Badger	383200	844031	run	1	-
Badger	383159	844078	run	1	-
Badger	382657	844114	run	1	-
Badger	381917	844160	run	1	-
Badger	382508	844277	run	1	-
Badger	382902	844296	run	1	-
Badger	382833	044334	run	1	-
Badger	382104	044373	run	1	-
Badger	382330	044007	run	1	-
Dauyei	202505	044730	run	1	-
Dauyei	202000	044773	run	1	-
Badgor	202921	044990	run	1	-
Badger	282158	04J2JJ 845310	run	1	
Badger	38196/	845667	run	1	
Badger	383716	845683	run	1	_
Badger	382077	845689	run	1	_
Badger	383749	845749	run	1	-
Badger	382005	845775	run	1	-
Badger	381853	845831	run	1	-
Badger	381607	845957	run	1	-
Badger	381665	846063	run	1	-
Badger	381844	846144	run	1	-
Badger	381686	846492	run	1	-
Badger	380591	847229	run	1	-
Badger	380467	847456	run	1	-
Badger	380281	847560	run	1	-
Badger	380200	847729	run	1	-

Table 18. Protected species survey results: field evidence records (for badger sett records refer to Confidential Annex 4.6B of this ES)

Modified Transmission Infrastructure for Telford, Stevenson and MacColl Wind Farms

Species	Easting	Northing	Field evidence	Sign Count	Details
Badger	380369	847742	run	1	-
Badger	380290	847789	run	1	-
Badger	380481	847810	run	1	-
Badger	380693	847850	run	1	-
Badger	380272	847936	run	1	-
Badger	380599	847988	run	1	-
Badger	380322	848068	run	1	-
Badger	380506	848070	run	1	-
Badger	380345	848372	run	1	-
Badger	379948	848632	run	1	-
Badger	379811	848721	run	1	-
Badger	379961	848769	run	1	-
Badger	379423	849474	run	1	-
Badger	378971	849535	run	1	-
Badger	379259	849715	run	1	-
Badger	378900	850390	run	1	-
Badger	378041	851172	run	1	Path snuffle marks
Badger	377773	851715	run	1	-
Badger	377825	851822	run	1	-
Badger	377662	852171	run	1	-
Badger	377172	852287	run	1	-
Badger	377298	852731	run	1	-
Badger	377329	852908	run	1	-
Badger	377289	853021	run	1	-
Badger	377066	853389	run	1	
Badger	375752	855000	run	1	_
Badger	372001	859019	run	1	-
Badger	369741	861491	run	1	_
Badger	369905	861569	run	1	
Badger	368329	861577	run	1	_
Badger	368828	861774	run	1	
Badger	369901	861779	run	1	-
Badger	367789	861860	run	1	-
Badger	367318	861868	run	1	
Badger	367826	861981	run	1	-
Badger	369720	862007	run	1	-
Badger	366717	862058	run	1	
Badger	366065	862486	run	1	Hair on barbed wire
Badger	366206	862583	run	1	Guard bair on barbed wire
Badger	366390	862735	run	1	Guard hair on barbed wire
Badger	366539	862861	run	1	
Badger	366616	862914	run	1	 -
Badger	366824	863090	run	1	 -
Badger	360443	863800	run	1	
Badger	361273	864007	run	1	
Badger	359324	864359	run	1	-
Badger	358257	864566	run	1	 -
Badger	358238	864623	run	1	 -
Badger	358123	864924	run	1	Guard hair on fence
Badger	356398	865044	run	1	Guard hair on fence
Badger	357330	865051	run	1	Guard hair on fence
Badger	356926	865196	run	1	Guard hair shout marks
Badger	357120	865306	run	1	Crossing A98
Badger	357022	865330	run	1	Crossing A98
Badger	356120	865392	run	1	Guard hair on fence
Badger	382772	843000	snuffle hole	1	Recent
Dudyci	502775	073777	SHALLE HUIE	'	noont

Modified Transmission Infrastructure for Telford, Stevenson and MacColl Wind Farms

Species	Easting	Northing	Field evidence	Sign Count	Details
Badger	382633	844139	snuffle hole	1	Recent
Badger	382433	844708	snuffle hole	1	Recent
Badger	383886	845254	snuffle hole	1	Recent
Badger	383615	845676	snuffle hole	1	Recent
Badger	381663	846288	snuffle hole	1	Path and snuffle marks. Recent
Badger	381228	847093	snuffle hole	1	Path and snuffle marks. Recent
Badger	380484	847428	snuffle hole	1	Path and snuffle marks. Recent
Badger	380249	847727	snuffle hole	1	Path and snuffle marks. Recent
Badger	380232	847937	snuffle hole	1	Recent
Badger	380562	848096	snuffle hole	1	Path and snuffle marks. Recent
Badger	380234	848403	snuffle hole	1	Recent
Badger	380300	848638	snuffle hole	1	Path and snuffle marks. Recent
Badger	3/80/4	851193	snuffle hole	1	Snuttle marks - recent
Badger	3/2048	859032	snuffle hole	1	Snuffle marks - recent
Badger	305912	862405	snume note	1	Recent shuffle marks
Badger	358240	864673	snuffle noie	1	Recent
Ottor	3/803/	850209	couch	1	Recent spraint - rist remains - resting up place
Ottor	3/0/4/	0000327	couch	1	Hole in river bank, probably used as a resting up place. No signs
Otter	300792	004120	couch	1	of recent use, grass growing up in entrance
Ottor	382068	8//278	spraint	1	Linder road bridge. Recent
Otter	378587	850135	spraint	1	Recent fish remains
Otter	357809	864965	spraint	3	2 old 1 recent
Otter	356213	865509	spraint	5	3 old, 2 recent fish remains
Red	378875	849447	feeding signs	1	Scots pine cone chewed by red squirrel
Squirrel				-	
Red	370989	860382	sighting	2	Seen on feeder at Coll Mhor cottage. Residents said they
Squirrel					appeared about a year ago after woodland was clear felled in
					the area.
Watervole	382422	844714	burrow	2	-
Watervole	382416	844721	burrow	4	-
Watervole	382397	844734	burrow	1	-
Watervole	382389	844740	burrow	3	-
Watervole	382382	844742	burrow	2	Burrows and latrine. Recent
Watervole	382368	844/56	burrow	3	-
Watervole	382347	844772	burrow	1	-
Watervole	381821	845830	burrow	1	-
Watervole	301704	045040	burrow	4	-
Watervole	201650	040004	burrow	3 2	-
Watervole	381686	8/5882	burrow	5	
Watervole	381503	8/5958	burrow	3	
Watervole	381528	846016	burrow	1	-
Watervole	381489	846061	burrow	3	_
Watervole	379926	848491	burrow	2	-
Watervole	379927	848492	burrow	2	-
Watervole	379928	848504	burrow	2	-
Watervole	379931	848528	burrow	2	-
Watervole	379934	848536	burrow	2	-
Watervole	379933	848545	burrow	2	-
Watervole	379932	848567	burrow	2	-
Watervole	379931	848599	burrow	1	Burrows and run. Recent
Watervole	379942	848725	burrow	2	-
Watervole	379943	848775	burrow	3	-
Watervole	379973	848853	burrow	2	-
Watervole	379970	848855	burrow	2	-

Species	Easting	Northing	Field evidence	Sign Count	Details
Watervole	379988	848890	burrow	2	-
Watervole	380003	848926	burrow	7	-
Watervole	380005	848934	burrow	2	-
Watervole	380021	848976	burrow	2	-
Watervole	380023	848988	burrow	2	-
Watervole	381561	845996	latrine	1	Burrow, latrine. Recent
Watervole	381724	846240	latrine	1	Recent
Watervole	379940	848760	latrine	1	Recent
Watervole	379983	848878	latrine	1	Recent
Watervole	380016	848965	latrine	1	Recent

Protected species evidence collected along the length of the modified OnTI shows the area is highly utilised by badgers. Thirty-six individual setts were recorded along the length of the corridor (these results can be seen in the Confidential Annex and the associated figure). Thirty of these setts were defined as main setts, with at least eleven of these exhibiting signs of current use. Well used runs, recently visited latrines, and snuffle holes and marks found along the corridor route similarly corroborate the high utilisation of the area by the species.

Use of watercourses by otters for foraging appears widespread with numerous couches and spraint locations discovered during the course of the surveys. Much of the indicative evidence shows recent use of the area, and it is likely the species uses watercourses within the corridor as part of a number of wider territories.

Feeding signs of red squirrel were noted at a single location; however a sighting of an individual was recorded within the ecology survey area. Due to this confirmation of species presence, precautions should be taken if areas of suitable habitat fall within the construction footprint.

Water vole sign was found throughout the survey area in habitats dominated by marshy grassland. Thirty-two burrow and five latrines were found across the ecology survey area.

No evidence of pine marten presence was recorded during the protected mammal surveys. Habitat suitable for pine marten was limited due to the low density of suitable woodland habitats along the cable route.

No evidence of wildcat was recorded during the protected mammal surveys and the habitat was considered to have low potential to support this species.

Bat Roost and Habitat Suitability Survey

Studies of bat habitat preferences show most species favour deciduous/mixed woodland and water for foraging. Bats favour landscapes with well-connected networks of different foraging habitats with abundant mature trees and buildings for roosting. They require a varied supply of insect prey throughout the year, thus intensive agricultural landscapes tend to be of low habitat suitability. Local climate is also important, with higher winds and lower night temperatures reducing bat activity. Consequently, the modified OnTI's northerly latitude and managed, open landscape of predominantly arable land and improved grassland, lacking well-connected networks of different foraging habitats, suggests low numbers and diversity of bats.

Grampian (north east Scotland) supports at least five resident bat species (Haddow and Herman, 2000):

- Soprano pipistrelle (*Pipistrellus pygmaeus*);
- Common pipistrelle (Pipistrellus pipistrellus);
- Brown long-eared bat (*Plecotus auritus*);
- Daubenton's bat (*Myotis daubentonii*); and
- Natterer's bat (*Myotis nattereri*).

Soprano pipistrelles use a wide range of habitats and roost in various buildings and trees, however they strongly favour foraging over habitats associated with water, especially rivers and lochs with marginal woodlands, yet few such waterbodies exist within the modified OnTI. However common pipistrelles are better adapted to agricultural landscapes with limited woodland and water, such as that within the modified OnTI. Daubenton's bat is a specialist of sheltered, calm water with a healthy chironomid midge population, whilst Brown long-eared and Natterer's bats favour foraging habitat of mixed landscapes with mature woodland, and roosting habitat in old, large buildings; few such habitats for any of these species exist within the modified OnTI. As such, common pipistrelle is likely to be best adapted to the habitat found along the cable route.

Assessments conducted of habitat suitability along the modifed OnTI in conjunction with the Phase 1 Habitat surveys categorised habitats throughout the route as either high, medium, or low according to their ability to provide bat species with roosting, foraging or commuting habitats. Table 19 details the target notes collated for Phase 1 and Bat Habitat Suitability surveys. Locations of these notes and the corresponding habitats they relate to can be seen in Figure 4.6-5.

Target	Easting	Northing	High	Target Note Comment
Note			suitability for	
Number			bat species	
1	366534	864009	✓	Property has medium to high roost potential with the surrounding
				habitat offering good opportunities for commuting and foraging bats.
2	366699	863241	\checkmark	Semi-natural broadleaved woodland. Is present at this location
				dominated by mature beech. Cracks and fissures present throughout
				the area which are suitable for roosting bats.
3	365941	862432	✓	Semi-mature deciduous woodland. Mostly beech, birch and sycamore.
				Many trees with holes/fissures suitable for bats. Valuable within the
				context of the area and intrinsically.
4	367900	862092	✓	Species rich deciduous semi-natural woodland including sycamore,
				beech, elm. Many roosting opportunities for bats within the mature
				canopy.
5	367760	861695		Inaccessible cliffs.
6	368367	861826	✓	Open birch woodland - semi - mature - mature. Diverse understory in
				places. Grazed by cattle. Good foraging potential for bats. Some trees
				had a roosting potential within cracks and fissures.
7	368412	862027	✓	Semi-mature/mature semi-natural woodland containing a diverse
				understory in places. Valuable within context of survey area for bat
				species. Some trees with high bat roost potential as cracks and fissures
				present. Birch is the dominant species.
8	373381	857342	\checkmark	Old farm buildings and farmhouse offering high potential for roosting
				bats.
9	374148	856606	✓	Highly suitable habitat containing the potential for bat roosts in the
				deciduous trees and some of the farm buildings. Good network of
				ditches and watercourses, coupled with a pond creates highly suitable
				foraging and commuting habitat within the area for the species.
10	374690	856433	-	Herb rich habitat dominated by reed canary grass, however the area is
				not classified as swamp as the water table well below the surface.
				Other species included lesser celandine and wood anemone.
11	374972	855758	-	Standing water is present at this location, however pollutants were
				noted and no invertebrates were recorded. As a result these ponds
				have little value for foraging bats.

Table 19, Bat Roost and Habitat Suitability survey results

Modified Transmission Infrastructure for Telford, Stevenson and MacColl Wind Farms

Target Note Number	Easting	Northing	High suitability for bat species	Target Note Comment
12	379148	850209	Ý	Highly suitable bat habitat recorded at this location. A pond, coupled with a sheltered valley containing marshy grassland species, young broadleaved trees in tubes and scattered scrub would provide high quality foraging and commuting habitat for bat species. Plant diversity throughout the area is moderately high.
13	379214	849885	-	Probable arable field however the land currently appears 'set-aside' with a range of species (moderately diverse) present.
14	379945	848670	V	All running water recorded in this location contains high commuting and high foraging potential for bat species.
15	379946	848321	-	Wet heath / wet modified bog habitat present at this location. Natural regeneration of Scots pine is occurring across the habitat.
16	380108	848203	-	A patch of wet modified bog is present at this location. Sphagnum abundance and diversity appears poor across this habitat with abundant hare's tail cotton-grass and ling heather present.
17	380224	848217	-	Species rich marshy grassland is present at this location. Soft rush and sharp-flowered rush dominate the vegetation interspersed with a diverse herbal ground flora including marsh violet and stitchwort.
18	380213	848247	-	A recently dug man-made pond containing no vegetation on the surrounding banks.
19	381594	846588	V	High bat roost potential within the semi-mature/mature beech trees present in this area. Trees contain abundant pockets and fissures for single roosting individuals.
20	381321	846193		A watercourse is present at this location, fenced on either side and with planted young deciduous (broadleaved) trees along the banks.
21	382360	845464	~	Burn of Asleid contains high bat foraging and commuting potential, with abundant mature deciduous trees present along its banks.
22	382553	843632	~	High foraging potential present at this location as fields contain cows increasing the invertebrate potential of the area.
23	382185	844226	-	A riding arena partially overgrown with grasses is present at this location. This is not deemed to be valuable ecologically.
24	381903	844225	~	Two large mature broadleaved trees are present in proximity to the mapped house. The area would provide medium roosting, high foraging, and medium commuting potential for bat species.
25	382261	844325	✓ ✓	These improved grassland fields are grazed by horses which will provide a high invertebrate diversity, and therefore contain high bat foraging potential.
6. References

Bang, P. and Dahlstrøm, P. (2001). Animal Tracks and Signs. Oxford University Press, Oxford.

Baxter, P.A.A, Gibbins, G. and Maggs, H. (2013) The White-billed Divers off North-east Scotland – discovering a new birding spectacle, Scottish Birds, Volume 33(3)

Birds Directive, http://jncc.defra.gov.uk/page-1373

Conservation of Habitats and Species Regulations, http://jncc.defra.gov.uk/page-1379

Eaton, M.A., Brown, A.F., Noble, D.G., Musgrove, A.J., Hearn, R., Aebischer, N.J., Gibbons, D.W., Evans, A. and Gregory, R.D. (2009) Birds of Conservation Concern 3: the population status of birds in the United Kingdom, Channel Islands and the Isle of Man, British Birds 102, pp 296 - 341

Forrester, R.W., Andrews, I.J., McInerny, C.J., Murray, R.D., McGowan, R.Y., Zonfrillo, B., Betts, M.W., Jardine, D.C. and Grundy, D.S. (eds). (2007). The Birds of Scotland. The Scottish Ornithologists' Club, Aberlady.

Francis, I. and Cook, M. (2011) (eds). North-east Scotland Breeding Bird Atlas 2002-2006. The Scottish Ornithologists' Club, Aberlady.

Gilbert, G., Gibbons, D.W. and Evans, J. (1998). Bird Monitoring Methods. RSPB, Sandy.

Gurnell J, Lurz P and Pepper H (2009), Practical Techniques for Surveying and Monitoring Squirrels, Forestry Commission, Surrey.

Habitats Directive, http://jncc.defra.gov.uk/page-1374

Haddow, J.F. and Herman, J.S. (2000). Recorded distribution of Bats in Scotland. Scottish Bats. 5: 35-47.

JNCC (2010). Handbook for Phase 1 Habitat Survey, A Technique for Environmental Audit. JNCC, Peterborough.

Marchant, J.H. (1983). BTO Common Birds Census Instructions. BTO, Tring.

NBN, http://www.nbn.org.uk/

NE LBAP, <u>http://www.nesbiodiversity.org.uk/</u>

Neal, E. and Cheeseman, C. (1996). Badgers. Poyser Natural History, London.

Protection of Badgers Act 1992, http://www.legislation.gov.uk/ukpga/1992/51/contents

RSPB (2013), http://www.rspb.org.uk/ourwork/projects/details/200086-can-agrienvironment-schemes-halt-and-reverse-corn-bunting-declines-in-eastern-scotland

Scottish Biodiversity List, http://www.biodiversityscotland.gov.uk/advice-and-resources/scottish-biodiversity-list/

SNH (2001). Scotland's Wildlife: Badgers and Development, <u>http://www.snh.org.uk/publications/on-line/wildlife/badgersanddevelopment/default.asp</u>

SNH (2008). Otters and Development. Scottish Wildlife Series.

Seabird 2000, http://jncc.defra.gov.uk/page-1548#partners

Wildlife and Countryside Act 1981, <u>http://jncc.defra.gov.uk/page-1377</u>

Morey Offshore Renewables. Ltd. © 2014. This document is the property of contractors and sub-contractors and shall not be reproduced nor transmitted without prior written approval. Gontains Ordnance Survey data © Crown Copyright and database right 2014.

Morav Offshore B.

Morey Offshore Renewables. Ltd. @ 2014. This document is the property of contractors and sub-contractors and shall not be reproduced nor transmitted without prior written approval. Gontains Ordnance Survey data @ Crown Copyright and database right 2014.

Moray Offshore Renewables. Lid © 2014. This document is the property of contractors and sub-contractors and shall not be reproduced nor transmitted without prior written approval. Goniance Renewables Lid © Crown Copyright and database right 2014.

Morey Offshore Renewables. Ltd. © 2014. This document is the property of confractors and sub-contractors and shall not be reproduced nor transmitted without prior written approval. Gontains Ordnance Survey data © Crown Copyright and database right 2014.

Morey Offshore Renewables. Ltd © 2014. This document is the property of contractors and sub-contractors and shall not be reproduced nor transmitted without prior written approval. Gontains Ofdhance Survey data © Crown Copyright and database right 2014.

demonaga alodzito ye

moray offshore renewables Itd

Developing Wind Energy In The Outer Moray Firth

Environmental Statement

Modified Transmission Infrastructure for Telford, Stevenson and MacColl Wind Farms

Technical Appendix 4.5 A

Intertidal Ecology Characterisation

This document was produced by Fugro EMU Limited on behalf of Moray Offshore Renewables Ltd ER O **Document Owner** Moray Offshore Renewables Ltd Final **Document Status** File Name C2610_MORL_IntertidalCharacterisationReport_FinalDraft Originated Checked Approved Description Revision Date Бy Ву Ву Jessica Paul Mark 13/06/2014 For Review А Holland English Gibson Paul Mark Jessica В 20/06/2014 Final Holland English Gibson

moray offshore renewables limited

4th Floor 40 Princes Street Edinburgh EH2 2BY

Tel: +44 (0)131 556 7602

Table of Contents

1	Intro	Introduction5			
	1.1 1.2 1.3	Project Background5Aims of the Study5Study Overview5			
2	Back	ground6			
	2.1 2.2	Regional Physical Environment6Regional Biological Context6			
3	Met	hods7			
	3.1 3.2 3.3	Survey Design7Sampling Survey7Biotope Classification8			
4	Resu	Results9			
	4.1 4.2 4.3	General Information9Biotope Mapping9Summary of Habitats and Communities at Inverboyndie Bay16			
5	Discussion19				
6	Conclusions				
7	References21				

List of Appendices

Appendix 1	Site Description and Species List - Inverboyndie	22
Appendix 2	Intertidal Photo Log - Inverboyndie	27
Appendix 3	Intertidal Photographs - Inverboyndie	30
Appendix 4	Figures	52

List of Tables

Table 4.1	Summary and classification (Connor et al., 2004) of the observed intertidal bioto	opes
within the	e survey area at Inverboyndie Bay	9
Table 4.2	LS.LSa.MoSa.BarSa observed biotope at Inverboyndie Bay	10
Table 4.3	LS.LSa.FiSa.Po observed biotope at Inverboyndie Bay	11
Table 4.4	LR.FLR.Eph.Ent observed biotope at Inverboyndie Bay.	12
Table 4.5	LR.FLR.Eph.EntPor observed biotope at Inverboyndie Bay	13
Table 4.6	LR.MLR.BF.Fser.R observed sub-biotope at Inverboyndie Bay.	14
Table 4.7	IR.MIR.KR.Ldig.Bo observed sub-biotope at Inverboyndie Bay	15

List of Plates

Plate 4.1	Existing pipe present to the west of the proposed cable route	16
Plate 4.2	Gravel/pebble rock armour on the eastern side of the survey area	16
Plate 4.3	Boulder rock armour on the western side of the survey area	17
Plate 4.4	Sand martin nesting site in the western side of the survey area	17

List of Figures

Figure 1	Location of the proposed cable route landfall site of t	he Moray Firth R3 Offshore Wind
Farm I	Development	Error! Bookmark not defined.
Figure 2	Inverboyndie Bay intertidal biotope and features map.	Error! Bookmark not defined.

1 Introduction

1.1 Project Background

Moray Offshore Renewables Limited (MORL) (a consortium developer comprising EDP Renovaveis and Repsol Nuevas Energias UK (formerly SeaEnergy Renewables)) commissioned a detailed technical study of the modified offshore transmission infrastructure (OfTI) corridor for the three consented wind farms (Telford, Stevenson and MacColl).

This study will be used to inform the Environmental Impact Assessment (EIA), with respect to any predicted effects of the installation of the export cable and its landfall site to assist in the development of mitigation measures, where agreed and appropriate. This will aid in the development of the Environmental Statement (ES) in support of the consent application.

To address these aspects, Fugro EMU Limited (Fugro EMU) was commissioned to undertake an intertidal ecological characterisation survey of the cable landfall at Inverboyndie for the modified OfTI. Accordingly, this document presents the survey methods used, the data collected and gives a characterisation of the intertidal benthic environment within and around the proposed export cable landfall option, in terms of the habitats available and their associated biological communities. Similarly, a sublittoral benthic study, relevant to the modified OfTI cable corridor, have been undertaken and reported separately. Both studies will be used to underpin EIA.

1.2 Aims of the Study

The study aims include:

- The characterisation of the intertidal environment within the vicinity of the proposal export cable landfall at Inverboyndie, including the associated infauna, epifauna and the subsequent allocation and mapping of biotopes; and
- Production of a biotope map to inform the EIA.

1.3 Study Overview

The proposed export cable makes landfall on the Aberdeenshire coastline at Inverboyndie Bay, as shown on **Error! Reference source not found.**.

2 Background

2.1 Regional Physical Environment

The proposed cable landfall site is situated on the west side of the north Aberdeenshire coastline, which stretches from Logie Head near Cullen (15 km to the west of Inverboyndie Bay) to the mouth of the River North Esk by St. Cyrus. Inverboyndie Bay extends approximately 700 m long and during a tidal cycle, the intertidal width can extend from 0-180 m (SEPA and Natural Scotland, 2014).

Most of the geology of the coastline, which is comprised of a mix of metamorphic, sedimentary and igneous rocks, is older than the Carboniferous era (~360 million years ago), however, some date back to the Precambrian era (>590 million years old). The coastline varies from long sandy beaches, to rock and shingle beaches (Barne *et al.*, 1996; Aberdeenshire Council, 2014).

Due to the hard nature of the bedrock, predominantly metamorphic Dalradian rocks, there are many rocky outcrops along the coastline (Barne *et al.*, 1996). Many outcrops extend sublittorally (Eleftheriou *et al.*, 2004), as found on the west side of Inverboyndie Bay intertidal survey area.

Sediment shores are also common along the coastline; they are often backed with dunes or sea cliffs (Eleftheriou *et al.*, 2004). Such shores often exhibit steep profiles and mobile sediments, due to the high energy and exposure of the shores; this is exhibited in surveys at Fraserburgh and Rattray (Terry and Sell, 1986; Eletheriou and Robertson, 1988). The mobility of the sediments, especially in sands, can often result in the sediments being naturally impoverished.

The beach at Inverboyndie has amenity value including surfing, windsurfing, bathing and wildlife walks. It is backed by a caravan park and is a designated bathing water beach.

2.2 Regional Biological Context

Many species of birds, fish, marine mammals and invertebrates are supported by the wide range of aquatic habitats that are present on and off the east coast of mainland Scotland, see Barne *et al.* (1996). In general, local assemblages share much in common with the west coast of Scotland, the North Sea, the North East Atlantic and Ireland (Eleftheriou *et al.*, 2004).

Sandy beaches in the area are characterised by polychaetes, crustaceans and molluscs (Eleftheriou and Robertson, 1988). Typical species include *Bathyporeia pilosa* and *Talitrus saltator* on the upper shore and *Haustorius arenarius, Eurydice pulchra, Bathyporeia pelagica* and *B. sarsi, Paraonis fulgens, Eteone longa, Ophelia rathkei* and *Scolelepis squamata* on the mid shore (Eleftheriou and Robertson, 1988). Lower shore sediment support the polychaetes *Spio filicornis, Nephtys cirrosa, Spiophanes bombyx* and *Lanice conchilega*, the crustaceans *Pontocrates altamarinus, B. elegans*, Pseudocuma gilsoni and Atylus swammerdami and the bivalves *Tellina tenuis* and *Donax vittatus* (Eleftheriou and Robertson, 1988). Many of the local sandy sediment shore communities are impoverished if the mobility of the sandy sediments and/or wave exposure is high.

Typical zonation is noted in rocky littoral habitats in the area, however, these shores noted to be less diverse than their counterparts on the west coast of Scotland (Eleftheriou *et al.*, 2004). Terry and Sell (1986) also note the rocky shore zonation, describing common presence of: ephemeral green and red algae, e.g. *Prasiola stipitata* and *Porphyra umbilicalis,* and winkles *Littorina saxatilis* on the upper shore; barnacles *Semibalanus balanoides,* bladderwrack *Fucus vesiculosus,* mussels *Mytilus edulis,* limpets *Patella vulgata,* dog whelks *Nucella lapillus* and mixed red algae species on the mid shore;

and crustose/turf forming red algae, thong weed *Himanthalia elongata*, kelp *Alaria esculenta* and a diverse range of cryptic amphipod and isopod crustaceans on the lower shore. Similarly to sediment shores, the diversity of rocky littoral shore also depends upon the exposure of the shore and on more gently sloping boulder and bedrock shorelines, like Inverboyndie Bay, zonation is usually less pronounced.

Reviews of existing biological and environmental data relative to the foreshore at Inverboyndie Bay reveal that this site does not hold any statutory designations for nature conservation.

3 Methods

3.1 Survey Design

At the proposed export cable landfall site at Inverboyndie Bay (Error! Reference source not found.), a broad scale biotope mapping survey of the intertidal area within 200 m either side of the cable landfall route was conducted.

The survey encompassed sampling points situated at varying levels within the vertical width of the shore, extending from the supra-littoral (splash/lichen) zone to the sub-littoral fringe, within an area extending 200 m either side of the proposed cable landfall route. Surveys followed JNCC Procedural Guidelines 3-1 (Wyn and Brazier, 2001) and comprised modified Phase I habitat mapping surveys along the route of the proposed cable on the foreshore.

No sampling of the intertidal zone was carried out, however, dig overs were carried out, from which substrate conditions were noted and key species were identified and enumerated (using the SACFOR scale) in situ.

3.2 Sampling Survey

Surveys were conducted on 20 May 2014 during low spring tides to allow access to the lowest reaches of the shore and to maximise working time.

In the field, base maps derived from aerial photography and Ordnance Survey were annotated with inventories of conspicuous species where possible.

Biotopes were classified on the basis of the Marine Habitat Classification System (Connor *et al.*, 2004).

The boundaries of each intertidal polygon/biotope were located and recorded using a Garmin 48 hand held Global Positioning System unit (GPS), accurate to 10 m, but often achieving <5 m accuracy. Polygon boundaries were identified by a change in the dominance or occurrence of conspicuous species or communities in combination with changes in physical characteristics of the habitat.

For each polygon the following information was noted:

- Physical characteristics, such as substrate type and topographic features (sand ripples, areas of standing water etc.);
- Species present and their SACFOR abundances; and
- Details of specimen samples taken from sites within the polygon.

Each waypoint marked with the GPS was noted on the waypoint log form along with the following information:

- Waypoint number;
- A description of what the waypoint represented; and
- Any photo numbers associated with each waypoint.

Digital photographs were taken to illustrate each habitat.

Biotope maps were augmented with target notes to record any un-mappable information. These are designed to include any features too small (<25 m²) to be accurately portrayed on a map, features on vertical faces and those found under boulders or overhangs. Target notes were also used to describe any human activities, such as outfalls, coastal protection measures and other man made features that are potential habitat modifiers.

Key species and substrate conditions that characterised the biotopes were identified and enumerated on site using the SACFOR abundance scale.

The biotope classifications were subsequently assigned and mapped over aerial photographs to allow area wide interpolation of the survey data. The boundaries of each biotope were digitised and incorporated within an ArcGIS and overlaid onto the base-mapping layer as a series of polygons.

3.3 Biotope Classification

Biotope code allocations were made using the current UK Marine Classification System V 4.05 (Connor *et al.*, 2004). Choice of biotope was made using the biotope decision making tool BioScribe (Hooper *et al.*, 2011). The BioScribe tool matches the species list from a sample to the biological communities usually recorded with potential biotope matches. Confidence indicators and direct links to habitat descriptions from the Marine Habitat Classification for Britain and Ireland are provided to facilitate the process. The tool was used by an experienced ecologist practiced in matching UK biotopes to field survey data with codes applied through expert judgment based on the BioScribe outputs and knowledge of the current biotope classification system. All survey data was used to inform the biotope allocation process, including site descriptions, photographic data, and target notes.

4 Results

4.1 General Information

Appendix 1 presents summary site descriptions and species recorded at each waypoint location at Inverboyndie Bay. Appendix 2 and Appendix 3 present the site photographs and associated logs.

4.2 Biotope Mapping

A total of six biotopes were identified across the Inverboyndie Bay survey area. Table 4.1 presents a summary of observed biotopes and provides links to the full descriptions, as per Connor *et al.* (2004). The distribution of the intertidal biotopes is presented in **Error! Reference source not found**.. Table 4.2 to Table 4.7 present the details of the observed biotopes across the Inverboyndie Bay survey area, together with illustrative photographs and data supporting biotope classification. The associated habitats and communities observed at Inverboyndie Bay are summarised within Section 4.3.

Table 4.1Summary and classification (Connor *et al.*, 2004) of the observedintertidal biotopes within the survey area at Inverboyndie Bay.

Waypoints	Assigned Biotope Code and Classification Link		
2, 3, 4, 5, 6,	LS.LSa.MoSa.BarSa	Barren littoral coarse sand	
7, 15, 16, 30	Link: <u>http://jncc.defra.gov.uk/ma</u>	rine/biotopes/biotope.aspx?biotope=JNCCMNCR00000187	
10 12	LS.LSa.FiSa.Po	Polychaetes in littoral fine sand	
12, 13	Link: <u>http://jncc.defra.gov.uk/ma</u>	rine/biotopes/biotope.aspx?biotope=JNCCMNCR00002182	
9	LR.FLR.Eph.Ent	<i>Enteromorpha</i> spp. on freshwater-influenced and/or unstable upper eulittoral rock	
	Link: <u>http://jncc.defra.gov.uk/ma</u>	rine/biotopes/biotope.aspx?biotope=JNCCMNCR00000414	
17, 18, 19	LR.FLR.Eph.EntPor	<i>Porphyra purpurea</i> and <i>Enteromorpha</i> spp. on sand-scoured mid or lower eulittoral rock	
	Link: <u>http://jncc.defra.gov.uk/ma</u>	rine/biotopes/biotope.aspx?biotope=JNCCMNCR00000422	
10, 11, 20, 21, 22, 23, 24,	LR.MLR.BF.Fser.R	<i>Fucus serratus</i> and red seaweeds on moderately exposed lower eulittoral rock	
27, 28, 29	Link: <u>http://www.jncc.gov.uk/ma</u>	rine/biotopes/biotope.aspx?biotope=JNCCMNCR00000368	
26	IR.MIR.KR.Ldig.Bo	<i>Laminaria digitata</i> and under-boulder fauna on sublittoral fringe boulders	
	Link: <u>http://jncc.defra.gov.uk/ma</u>	rine/biotopes/biotope.aspx?biotope=JNCCMNCR00000496	

Table 4.2LS.LSa.MoSa.BarSa observed biotope at Inverboyndie Bay.

Broad Habitat	LS	Littoral sediment		
Habitat Complex LSa		Littoral sand		
Biotope Complex	MoSa	Barren or amphipod-domi	nated mobile sand shores	
Biotope	BarSa	Barren littoral coarse sanc		
Waypoint 4 Lower shore area of barren sand. Photo taken facing east.		Waypoint 6 Mid shore area of barren sand facing the upper shore cobble rock armour. Photo taken facing south.	Waypoint 5 Upper shore barren sand, close to the proposed cable route landing site. Photo taken facing north.	
Waypoint 3 Upper shore barren sand, meeting cobble rock armour. Photo taken facing east.		Waypoint 16 Close-up of a small strip of rippled sand.	Waypoint 5 Close-up of barren sand in the upper shore.	
Description of Observed B	liotope			

This biotope extended across the whole length of the survey area, stretching from the upper to lower shore on the east of the survey area and from upper to mid shore on the west. The sediments at all the waypoints consisted of sands, with occasional pebbles noted in the mid shore (Waypoints 3 and 6). A small strip of rippled sand was noted at Waypoint 16. No obvious species were noted within the biotope, other than some drift algae along the strandline at Waypoints 2 and 5.

The substrate type and absence of fauna supports the classification as the LS.LSa.MoSa.BarSa biotope. The sand associated with this biotope characterised as clean, mobile and free-draining, typically drying out between tides, especially on the upper shore. This is likely to have attributed to the lack of species in this area.

Broad Habitat LS		Littoral sediment		
Habitat Complex LSa		Littoral sand		
Biotope Complex	FiSa	Polychaete/amphipod-dominated fine sand shores		
Biotope	Ро	Polychaetes in littoral fine sand		
Biotope Po Pol Second		Waypoint 12 View of the existing pipe running down shore across		
Description of Observed E	Biotope			

Table 4.3LS.LSa.FiSa.Po observed biotope at Inverboyndie Bay.

This biotope was present in two areas of sand, located to the west of the proposed cable route, between the existing pipe and freshwater stream, in areas absent from rock. The sediments consisted of sands, predominantly rippled, upon which, lugworm casts were present. During dig overs, the species *Arenicola marina* were noted to be occasional/common in abundance. Upon the pipe, *Enteromorpha* spp. and *Porphyra* spp. algae were recorded.

The LS.LSa.FiSa.Po biotope is usually characterised by stable, clean, fine sand that contains little organic matter and remains damp throughout the tidal cycle. The sediment is often noted to be rippled and can lack an anoxic layer. The biotope occurs mainly in the lower part of the shore. Other species can also be found in the biotope, however, the lack of species other than *A. marina* may be similar to the depauperate nature of shore where boulders are not present.

Broad Habitat	LR	Littoral rock (and other hard substrata)
Habitat Complex	FLR	Features of littoral rock
Biotope Complex	Eph	Ephemeral green or red seaweed communities (freshwater or sand-influenced)
Biotope	Ent	Enteromorpha spp. on freshwater-influenced and/or unstable

upper eulittoral rock

View from Waypoint 8 Start of the freshwater stream at the top of the shore. Photo taken facing north.

Waypoint 9

Situated on the freshwater stream. Bare sand and boulders with *Enteromorpha* spp. Photo taken facing north. Waypoint 9 Close-up of *Enteromorpha* spp. on bare sand and boulders within the freshwater stream.

Description of Observed Biotope

The area of the upper shore within the drainage path of the freshwater stream, including Waypoint 9, has been designated as this biotope. The area is characterised by the present of *Enteromorpha* spp. upon boulders amongst the freshwater drainage channels. Sand does intersperse the boulders and channels; this sand has been characterised as bare and is absent from obvious species.

The **LR.FLR.Eph.Ent** biotope description matches the designated area as it notes the regular occurrence of the considerable influence of freshwater runoff, as well as the depauperate nature of species, other than a characteristic dense mat of *Enteromorpha* spp.

	•	. , , , , ,
Broad Habitat	LR	Littoral rock (and other hard substrata)
Habitat Complex	FLR	Features of littoral rock
Biotope Complex	Eph	Ephemeral green or red seaweed communities (freshwater or sand- influenced)
Biotope	EntPor	Porphyra purpurea and Enteromorpha spp. on sand-scoured mid or lower eulittoral rock

Table 4.5LR.FLR.Eph.EntPor observed biotope at Inverboyndie Bay.

Waypoint 17 View of the rocky outcrops from the edge of the sand. Photo taken facing north.

View across the biotope towards the sand. Photo take facing south.

Waypoint 18

Waypoint 17 Close-up on boulders and sand with *Enteromorpha* spp. and *Porphyra* spp.

Description of Observed Biotope

This area is situated on the far west of the survey area, in the mid shore region. Similar to that identified as the **LR.FLR.Eph.Ent** biotope with the presence of boulders and *Enteromorpha* spp. However, this area occurs in the mid to lower shore area, does not appear to be freshwater influenced and has more species present. The present species include *Enteromorpha* spp. and *Porphyra* spp., as well as *Arenicola marina* within the sandy sediments around the boulders. The sands within northerly section of the biotope were noted in the field to be more rippled; this is attributed to its position on the shore, having more recently been submerged.

The LR.FLR.Eph.EntPor biotope classification concurs with the characteristics of the area, including the presence of areas of sand between the rocks. This sand is noted to have an abrasive effect on the rocks, as well as influencing the algae species present, primarily ephemeral red or green seaweeds, rather than wracks.

Table 4.6LR.MLR.BF.Fser.R observed sub-biotope at Inverboyndie Bay.

Broad Habitat	LR	Littoral rock (and other hard subs	trata)
Habitat Complex MLR		Moderate energy littoral rock	
Biotope Complex	BF	Barnacles and fucoids on modera	tely exposed shores
Biotope	Fser	Fucus serratus on moderately exp	oosed lower eulittoral rock
Sub-biotope	R	<i>Fucus serratus</i> and red seawed eulittoral rock	eds on moderately exposed lower
Waypoint 11 Rocky outcrop from th shore. Photo taken facing w	e lower west.	View from Waypoint 20 Rocky outcrop from mid shore. Photo taken facing west.	Waypoint 11Close-up on Semibalanusbalanoides, Nucella Iapillus, Patellavulgata., Fucus serratus.
			Enteromorpha spp. and Mastocarpus stellatus.
Waypoint 27	., ,	Waypoint 22	Waypoint 23
Close-up on <i>Semibalanus</i> balanoides., <i>Mastocarpus stellatus</i> , <i>Enteromorpha</i> spp. and <i>Cladophora</i> on boulders.		Close-up on <i>Fucus serratus</i> on boulders.	Close-up on <i>Fucus serratus,</i> <i>Corallina officinalis</i> and <i>Mastocarpus stellatus.</i>
Description of Observed Biotope			

This biotope consisted of a large area of rocky outcrop, including large boulders. On which, multiple algae species were recorded, including *Fucus serratus, Corallina officinalis, M. stellatus, Cladophora* spp., *Enteromorpha* spp. and *Porphyra* spp., as well as *Semibalanus* balanoides., *Patella vulgata*. and *N. lapillus*. The biotope LR.MLR.BF.Fser.R description focuses on the sense mosaic of algae species, predominantly brown and red seaweeds, including *C. officinalis* and *M. stellatus*. It also matches the classified area based on the

species present under the seaweed canopy.

Table 4.7	IR.MIR.KR.Ldig.Bo observed sub-biotope at Inverboyndie Bay.

Broad Habitat	IR	Infralittoral rock (and other hard substrata)				
Habitat Complex	MIR	Moderate energy infralittoral rock				
Biotope Complex	KR	Kelp and red seaweeds (moderate energy infralittoral rock)				
Biotope	Ldig	Laminaria digitata on moderately exposed sublittoral fringe rock				
Sub-biotope	Во	Laminaria digitata and under-boulder fauna on sublittoral fringe boulders				

Waypoint 26 View of the rocky outcrop from the low water mark. Photo taken facing south.

Waypoint 26 View of the rocky outcrop from the low water mark. Photo taken facing west.

Waypoint 26 Close-up on *Laminaria digitata*, *Fucus serratus* and *Palmaria palmata* between the boulders.

Description of Observed Biotope

This biotope was recorded at the lowest extent of the survey area, west of the proposed cable route. The area is an extension of the rocky outcrop covering the majority of the western mid-lower shore part of the survey area, but is characterised by a dense mat of primarily *Laminaria digitata*., rather than the mixed seaweed of the **LR.MLR.BF.Fser.R** biotope.

The **IR.MIR.KR.Ldig.Bo** biotope is normally characterised as a moderately exposed boulder shore with the upper surfaces of the boulders colonised by dense *Laminaria digitata*, sometimes with other species present, like *F. serratus*. The noted community includes these species, as well as the presence of *P. palmata* under the canopy and barnacles like *Semibalanus balanoides* on the boulders.

4.3 Summary of Habitats and Communities at Inverboyndie Bay

4.3.1 Habitats

Inverboyndie Bay consisted of an exposed, high energy, clean sandy beach. To the east of the export cable corridor landfall was a large area barren sand; to the west, barren sand at the top of the shore and algae covered boulders towards the lower shore. The majority of the upper shore sand areas were noted to be flat. Rippled areas were noted in small areas, or in areas that had been recently submerged, i.e. were created by wave action or tidal currents.

A freshwater outflow to the west of the cable route created a shallow channel that bisected the intertidal survey area and flowed perpendicular to the shoreline. The associated directly influenced area may vary over time depending on the flow rate of the freshwater stream, as well as in part to interactions between tides and local currents.

An existing pipe was present on the shore (Plate 4.1), by which Waypoint 13 was located. On the surface of the pipe *Porphyra* spp. and *Enteromorpha* spp. were recorded. The extent of the pipe is recorded on the biotope and features plot (**Error! Reference source not found.**).

Plate 4.1 Existing pipe present to the west of the proposed cable route

Although not surveyed during the current study, gravel/pebble "rock armour" appears to have been placed at the top of the shore on the eastern side of the survey area (Plate 4.2). Static caravans, mobile caravans and a car park are located directly behind this gravel strip. The beach sediments directly in front of the strip were well drained and dry.

Plate 4.2 Gravel/pebble rock armour on the eastern side of the survey area

To the western end of the survey area, the shoreline shows evidence of wave action, with the terrestrial sediments appearing to have receded. Boulder-sized rock armour has been added to protect this section of coastline (Plate 4.3). Similarly to the gravel strip, this area has not been surveyed as part of this study.

Plate 4.3 Boulder rock armour on the western side of the survey area

While surveying the area, the surveyors also noted the presence of a sand martin nesting site (Plate 4.4) near Waypoint 14, to the west of the survey area. This is not included as part of this assessment but is included for context.

Plate 4.4 Sand martin nesting site in the western side of the survey area

4.3.2 Biotopes

The majority of the sandy sediments were noted to be highly depauperate and were accordingly classified as the **LS.LSa.MoSa.BarSa** (Barren littoral coarse sand) biotope. This biotope is typical of exposed shores with a more steep profile, where the mobility and degree of drainage of the sediments enables very few, if any, individuals to survive (Connor *et al.*, 2004), however, the sediments on this shore do appear to have sufficient drainage and mobility to fit this classification.

On the western end of the mid shore, an area of boulders interspersed with barren sand with a covering of *Enteromorpha* spp. was recorded. This area was categorised as LR.FLR.Eph.EntPor (*Porphyra purpurea* and *Enteromorpha* spp. on sand-scoured mid or lower eulittoral rock). The high level of sand scour is likely to have attributed to the abraded nature of the boulders and the dominance of ephemeral red/green seaweeds as opposed to wracks like *F. serratus* (Connor *et al.*, 2004), which is present in the LR.MLR.BF.Fser.R biotope elsewhere on the shore.

Two other small sandy areas were noted to have *Arenicola marina* present in the sediments, and casts on the rippled surface. These areas appeared in clearings within the rocky outcrops. The communities were characterised as **LS.LSa.FiSa.Po** (Polychaetes in littoral fine sand), however, the community is noted to be relative depauperate, consistent with the substrates of the shore as a whole.

A freshwater stream drains on to the shore to the west of the cable landing site. Within the drainage path, boulders and channels are present, with coverage of *Enteromorpha* spp. This coverage of algae appears to have been promoted by the freshwater influence, as the surrounding barren sand is absent from obvious species. This community fits well with the description of LR.FLR.Eph.Ent (*Enteromorpha* spp. on freshwater-influenced and/or unstable upper eulittoral rock) (Connor *et al.*, 2004).

To the northwest end of the survey area, the most complex community was recorded; this was classified as one biotope, LR.MLR.BF.Fser.R (*F. serratus* and red seaweeds on moderately exposed lower eulittoral rock). This area consists of rocky outcrops with coverage of various algal species, under which a number of epifaunal species were present. The definition between this biotope and the IR.MIR.KR.Ldig.Bo (*Laminaria digitata* and under-boulder fauna on sublittoral fringe boulders) was difficult to accurately define, as the substrate and epifaunal species are similar, however, the former biotope includes the addition of *L. digitata* in a distinct canopy. The extent of each biotope has the potential to vary temporally, depending on wave action, tides and storms.

5 Discussion

This study has characterised the intertidal habitats and the associated macrofaunal communities around the proposed cable landfall site. These data will inform the EIA for the modified transmission infrastructure (TI).

The beach at Inverboyndie Bay was moderately exposed and consisted of clean sands subject to mobility as well as an area of rocky outcrop west of the proposed cable route. Boulder rock armour was recorded to the west of the site, protecting the receding terrestrial environment.

The majority of the survey area, especially to the east of the proposed cable landing site, was classified as the LS.LSa.MoSa.BarSa biotope. This reflects the impoverished nature of this area, due to the efficient draining of the sediment in the upper shore and intense wave action in the lower shore, therefore, appear to be unable to support to many beach fauna.

The remainder of the shore was comprised of a mix of small areas of sand, boulders and algal cover. Although the sand was still relatively depauperate, these areas did support epifauna attached to the boulders and various algal species, so providing some species richness to the shore. This area includes the biotopes LR.FLR.Eph.EntPor, LR.MLR.BF.Fser.R and IR.MIR.KR.Ldig.Bo, of which IR.MIR.KR.Ldig.Bo is potentially important, based on the following considerations.

Rocky Boulder and Bedrock communities

The EC Habitats Directive lists Annex I rocky reef habitats as a Habitat of International Conservation Importance (Council Directive EEC/92/43 on the Conservation of Natural Habitats and Wild Fauna and Flora). Such intertidal areas need to be connected to a sublittoral reef for the rocky aggregation to qualify as an Annex I rock reefs, as they tend to be subtidal.

Under-boulder communities

Diverse under-boulder communities can be present under intertidal boulders, therefore, the habitat is listed as a priority habitats for conservation under the UK Biodiversity Action Plan.

The **IR.MIR.KR.Ldig.Bo** biotope was only recorded in two small areas of the intertidal survey area and neither were along the immediate route of the modified OfTI corridor, therefore, are not envisaged to be directly affected by the installation of the export cable at Inverboyndie Bay.

6 Conclusions

This study focuses on the intertidal area surrounding the proposed export cable landfall location on Inverboyndie Bay beach. The data from this characterisation of the beach and shoreline habitats and biological communities will inform the EIA to accompany the modified TI consent application.

The majority of the surveyed area was classified as barren sand, due to the extremely depauperate nature of the sand communities. The impoverished nature is likely to have been as a result of the exposure and dynamic nature of the sandy sediments. The majority of the flora and fauna was present on the rocky outcrops to the west of the cable route in the mid to lower shore. The flora included ephemeral green and red algae and kelps and the fauna included attaching organisms like barnacles, winkles and limpets. Of the species identified, none were considered rare or protected and the habitats found were typical of sandy beaches and rocky shores within the wider region.

The part of the rocky outcropping may match intertidal rocky reef and under-boulder communities. These communities are not located to the west of the modified export cable landfall, therefore, are likely to be beyond the predicted direct effects of cable installation activities.

7 References

Aberdeenshire Council, 2014. *Aberdeenshire Council Beaches* [online] Available from: <u>http://www.aberdeenshire.gov.uk/beaches/</u> Accessed Jun 2014.

Barne, J.H., Robson, C.F., Kaznowska, S.S., Doody, J.P. and Davidson, N.C., eds. (1996) *Coasts and seas of the United Kingdom. Region 3 North-east Scotland: Cape Wrath to St. Cyrus.* Coastal Directories Series. Peterborough, Joint Nature Conservation Committee.

Connor, D.W., Allen, J.H., Golding, N., Howell, K.L., Lieberknecht, L.M., Northen, K.O. and Reker, J.B. (2004) *The marine habitat classification for Britain and Ireland, version 04.05* [online] Joint Nature Conservation Committee. Available from: <u>http://jncc.defra.gov.uk/MarineHabitatClassification</u> Accessed June 2014.

Eleftheriou, A., Basford, D., and Moore, D.C. (2004) *Synthesis of information on the benthos area SEA 5*. Report for the Department of Trade and Industry, SEA 5, 145 pp.

Eleftheriou, A. and Robertson, M.R. (1988) *The intertidal fauna of sandy beaches – a survey of the east Scottish coast.* Department of Agriculture and Fisheries for Scotland, Aberdeen (Scottish Fisheries Research Report, No. 38).

Hooper, G.J., Barfield, P.D., Thomas N.S. and Capasso, E. (2011) *Redefining biotopes at a regional scale and development of a new MNCR biotope decision support tool.* Published by the MALSF. EMU Limited Report No. 1/J/1/03/1552/1103. ISBN No. 978 0 907545 58 3.

SEPA (Scottish Environmental Protection Agency) and Natural Scotland, 2014. Bathing water profile:Inverboyndie[online]Availablefrom:http://www.sepa.org.uk/water/bathing_waters/idoc.ashx?docid=45bf3064-363c-47d1-ae71-8b83e6dd3938&version=-1Accessed Jun 2014.

Terry, L.A. and Sell, D., 1986. Rocky shores in the Moray Firth. *Proceedings of the Royal Society of Edinburgh*, **91B**, 169–191.

Wyn, G. and Brazier, P. (2001) *Procedural Guideline No. 3-1. In situ biotope recording.* IN: Davies, J., Baxter, J., Bradley, M., Connor, D., Khan, J., Murray, E., Sanderson, W., Turnbull, C. and Vincent, M., eds. *Marine Monitoring Handbook*, 405 pp.

Appendix 1 Site Description and Species List - Inverboyndie

Waypoint	Position WGS84 DD° mm.mmm'		Description of site	Taxa and Abundance (SACFOR	
110.	Longitude	Latitude		scale)	
T3 (East of cable route)	57°40.239'N	2°33.242'W	Rock dump at top of shore extends for 10 m. No obvious species.	n/a	
2	57°40.241'N	2°33.235'W	Edge of rock dump, barren sand. Small amount of drift algae present.	n/a	
3	57°40.265'N	2°33.242'W	Mid shore barren sand with occasional pebble. No obvious species.	n/a	
4	57°40.316'N	2°33.259'W	Lower shore - barren sand with small rippled patches. No obvious species.	n/a	
30	57°40.344'N	2°33.263'W	Low water mark - barren sand. No obvious species.	n/a	
T2 (Proposed Cable route)	57°40.294'N	2°33.464'W	Rock dump at top of shore extends for 11.8 m - no obvious species.	n/a	
5	57°40.299'N	2°33.463'W	Edge of rock dump, barren sand. Small amount of drift algae present.	n/a	
6	57°40.335'N	2°33.479'W	Mid shore barren sand with occassional pebble, slight ripples. No obvious species.	n/a	
7	57°40.380'N	2°33.493'W	Fresh water stream running down shore. No obvious species	n/a	
8	57°40.335'N	2°33.575'W	Fresh water stream - top of shore. No obvious species.	n/a	
9	57°40.349'N	2°33.571'W	Green filamentous algae on sand and boulders beside fresh water stream	Enteromorpha A	
10	57°40.399'N	2°33.499'W	Edge of rocky outcrop. Assortment of brown, red and green seaweeds. Obvious	Semibalanus balanoidesSNucella lapillusFLittorina sp.O	

Waypoint	Position DD° mm	WGS84 n.mmm'	Description of site	Taxa and Abundance (SACFOR scale)	
110.	Longitude	Latitude		scale)	
			fauna of barnacles,	Enteromorpha spp.	С
			dogwhelks, winkles and limpets.	<i>Porphyra</i> spp.	С
				Mastocarpus stellatus	С
				Fucus serratus	С
				Patella vulgata	0
11	57°40.406'N	2°33.501'W	Lower shore at edge of	Semibalanus balanoides	S
			rocky outcrop. Barren sand beside large	Nucella lapillus	F
			boulders.	Patella vulgata	0
				Mastocarpus stellatus	С
				<i>Littorina</i> sp.	0
				Fucus serratus	С
				Enteromorpha spp.	С
				<i>Porphyra</i> spp.	С
27	57°40.406'N	2°33.493'W	Rocky outcrop. Mixed	Semibalanus balanoides	S
			algae and fauna present.	Patella vulgata	0
				Nucella lapillus	С
				<i>Littorina</i> sp.	0
				Mastocarpus stellatus	С
				Enteromorpha spp.	С
				<i>Porphyra</i> spp.	0
				<i>Cladophora</i> spp.	0
28	57°40.406'N	2°33.493'W	Rocky boulders with	Rhodothamniella floridula	F
			patches of sand in- between. Beginning of	Semibalanus balanoides	F
			kelp zone.	Patella vulgata	0
				Nucella lapillus	F
				<i>Littorina</i> sp.	0
				Mastocarpus stellatus	С
				Enteromorpha spp.	0
				<i>Porphyra</i> spp.	0
				Cladophora spp.	0
				Fucus serratus	А
				Laminaria digitata	А
29	57°40.419'N	2°33.496'W	Rocky boulders with	Rhodothamniella floridula	F
			patches of sand in-	Semibalanus balanoides	F

Waypoint	Position DD° mm	WGS84 n.mmm'	Description of site	Taxa and Abundance (SACF	
110.	Longitude	Latitude	Sourcy	scarcy	
			between. Beginning of	Patella vulgata	0
			kelp zone.	Nucella lapillus	F
				<i>Littorina</i> sp.	0
				Mastocarpus stellatus	С
				Enteromorpha spp.	0
				<i>Porphyra</i> spp.	0
				<i>Cladophora</i> spp.	0
				Fucus serratus	А
				Laminaria digitata	А
12	57°40.381'N	2°33.538'W	Area of sand with Arenicola casts	Arenicola marina	0
13	57°40.381'N	2°33.580'W	Pipeline running down	Enteromorpha spp.	С
	of green and red algae.	<i>Porphyra</i> spp.	А		
			Sandy area beside pipe rippled with <i>Arenicola</i> casts present.	Arenicola marina	С
14	57°40.361'N	2°33.673'W	Sand Martin nesting area at top of shore.	n/a	
T1 (West of cable route)	57°40.364'N	2°33.700'W	Rock dump at top of shore extends for 11.9 m - no obvious species.	n/a	
15	57°40.369'N	2°33.698'W	Edge of rock dump, barren sand with occasional pebbles. Small amount of drift algae present.	n/a	
16	57°40.377'N	2°33.707'W	Small strip of rippled sand. No obvious species.	n/a	
17	57°40.400'N	2°33.720'W	Area of boulders and	Enteromorpha spp.	А
			covered with red and	<i>Porphyra</i> spp.	С
			green algae. <i>Arenicola</i> casts present on sand patches.	Arenicola marina	0
18	57°40.421'N	2°33.721'W	Large patch of slightly rippled sand between boulders. <i>Arenicola</i> casts present.	Arenicola marina	0
19	57°40.434'N	2°33.720'W	Low tide mark at edge	Enteromorpha spp.	А
			or sand pateri.	Porphyra spp.	С

Waypoint	Position WGS84 DD° mm.mmm'		Description of site	Taxa and Abundance (SACFOR	
110.	Longitude	Latitude		scale)	
			Boulders covered with red and green algae. <i>Arenicola</i> casts present on sandy patches between boulders.	Arenicola marina	0
20	57°40.424'N	2°33.655'W	Edge of large rocky	Enteromorpha spp.	А
			covered in red and green algae with areas of sand in-between.	<i>Porphyra</i> spp.	С
21	57°40.421'N	2°33.641'W	Mid shore area of	Fucus vesiculosus	С
			dominated by large	Fucus serratus	С
	brown seaweeds.	<i>Cladophora</i> spp.	0		
			<i>Littorina</i> sp.	0	
				Semibalanus balanoides	С
				Nucella lapillus	0
				Patella vulgata	0
22	57°40.432'N	2°33.628'W	Mid shore area of	Fucus serratus	А
			turf of seaweeds.	Osmundia hybrida	F
				Mastocarpus stellatus	С
				Patella vulgata	0
				Nucella lapillus	F
				<i>Littorina</i> sp.	0
				Semibalanus balanoides	С
23	57°40.433'N	2°33.629'W	Lower shore area of	Corallina officinalis	F
			zone. Some	Laminaria digitata	С
			<i>Pomatoceros</i> tubes	Fucus serratus	А
			visible on rocks.	Osmundia hybrida	F
				Mastocarpus stellatus	С
				Nucella lapillus	F
				<i>Littorina</i> sp.	0
				Semibalanus balanoides	С
				Patella vulgata	0

Waypoint	Position WGS84 DD° mm.mmm'		Description of site	Taxa and Abundance (SACFOR	
110.	Longitude	Latitude		scale)	
24	57°40.444'N	2°33.622'W	Lower shore area of	Fucus serratus	А
			rocky outcrop - kelp zone.	Mastocarpus stellatus	F
			Patella vulgata	0	
				Nucella lapillus	0
			Cladophora spp.	0	
				Red calcareous encrusters	0
			Corallina officinalis	F	
				Palmaria palmata	F
				Laminaria digitata	А
26	57°40.462'N	2°33.565'W	Low water mark on	Palmaria palmata	С
			rocky outcrop.	Red calcareous encrusters	0
				Laminaria digitata	А
			Fucus serratus	С	
				Mastocarpus stellatus	F
				Patella vulgata	0
				Semibalanus balanoides	F

Appendix 2	Intertidal Photo Log	- Inverbovndie
		menter

Marine interes	Position WGS84 Z3	Dhoto no	Discution	
waypoint no.	Longitude	Latitude	Photo no.	Direction
Start of T3	57°40.239'N	2°33.242'W	P5200001	North
(East of proposed cable route)			P5200002	East
			P5200003	West
2	57°40.241'N	2°33.235'W	P5200004	North
			P5200005	East
			P5200006	West
			P5200007	Close-up
3	57°40.265'N	2°33.242'W	P5200008	North
			P5200009	East
			P5200010	West
			P5200011	Close-up
4	57°40.316'N	2°33.259'W	P5200012	East
			P5200013	West
			P5200014	South
			P5200015	Close-up
30	57°40.344'N	2°33.263'W	P5200085	South
			P5200086	Close-up
Start of T2	57°40.294'N	2°33.464'W	P5200016	North
(Proposed cable route)			P5200017	East
			P5200018	West
5	57°40.299'N	2°33.463'W	P5200019	North
			P5200020	East
			P5200021	West
6	57°40.335'N	2°33.479'W	P5200022	North
			P5200023	East
			P5200024	South
			P5200025	West
			P5200026	Close-up
7	57°40.380'N	2°33.493'W	P5200027	North
8	57°40.335'N	2°33.575'W	P5200028	North
9	57°40.349'N	2°33.571'W	P5200029	North
			P5200030	Close-up

Moray Offshore Renewables Limited

Modified Transmission Infrastructure for Telford, Stevenson and MacColl Wind Farms

Mounciet ec	Position WGS84 Z30	ON DD° m.mmm'	Dhoto no	Direction
waypoint no.	Longitude	Latitude		Direction
10	57°40.399'N	2°33.499'W	P5200031	North
10			P5200032	Close-up
			P5200033	Close-up
			P5200034	Close-up
11	57°40.406'N	2°33.501'W	P5200035	South
			P5200036	East
			P5200037	West
			P5200038	Close-up
27	57°40.406'N	2°33.493'W	P5200080	North
			P5200081	South
			P5200082	Close-up
28	57°40.412'N	2°33.495'W	P5200083	Close-up
29	57°40.419'N	2°33.496'W	P5200084	South
12	57°40.381'N	2°33.538'W	P5200039	Close-up
13	57°40.381'N	2°33.580'W	P5200040	North
			P5200041	Close-up
			P5200042	Close-up
14	57°40.361'N	2°33.673'W	P5200043	Close-up
Start of T1	57°40.364'N	2°33.700'W	P5200044	North
(West of proposed cable route)			P5200045	East
			P5200046	West
15	57°40.369'N	2°33.698'W	P5200047	North
			P5200048	East
			P5200049	West
			P5200050	South
16	57°40.377'N	2°33.707'W	P5200051	Close-up
17	57°40.400'N	2°33.720'W	P5200052	North
			P5200053	East
			P5200054	South
			P5200055	West
			P5200056	Close-up
			P5200057	Close-up
			P5200058	Close-up
18	57°40.421'N	2°33.721'W	P5200059	North
			P5200060	East
			P5200061	South
			P5200062	West

Mouraint na	Position WGS84 Z30	Position WGS84 Z30N DD° m.mmm'		
waypoint no.	Longitude	Longitude Latitude		Direction
19	57°40.434'N	2°33.720'W	P5200063	North
			P5200064	East
			P5200065	South
			P5200066	West
20	57°40.424'N	2°33.655'W	P5200067	West
			P5200068	Close-up
21	57°40.421'N	2°33.641'W	P5200069	Close-up
22	57°40.432'N	2°33.628'W	P5200070	Close-up
			P5200071	Close-up
23	57°40.433'N	2°33.629'W	P5200072	Close-up
24	57°40.444'N	2°33.622'W	P5200073	Close-up
			P5200074	Close-up
26	57°40.462'N	2°33.565'W	P5200076	East
			P5200077	South
			P5200078	West
			P5200079	Close-up
Appendix 3 Intertidal Photographs - Inverboyndie

Waypoint	Direction	Photo no.	Photograph	Comments / Description
Start of T3 (East of proposed cable route)	North	P5200001		From rock armour at top of shore
Start of T3 (East of proposed cable route)	East	P5200002		From rock armour at top of shore
Start of T3 (East of proposed cable route)	West	P5200003		From rock armour at top of shore
2	North	P5200004		From start of barren sand

Waypoint	Direction	Photo no.	Photograph	Comments / Description
3	East	P5200005		From start of barren sand
4	West	P5200006		From start of barren sand
5	Close-up	P5200007		Zoomed in - barren sand
3	North	P5200008		Mid shore - barren sand

Waypoint	Direction	Photo no.	Photograph	Comments / Description
3	East	P5200009		Mid shore - barren sand
3	West	P5200010		Mid shore - barren sand
3	Close-up	P5200011		Zoomed in - barren sand
4	East	P5200012		Lower shore - barren sand

Waypoint	Direction	Photo no.	Photograph	Comments / Description
4	West	P5200013		Lower shore - barren sand
4	South	P5200014		Lower shore - barren sand
4	Close-up	P5200015		Zoomed in - barren sand
30	South	P5200085		From low tide mark - barren sand

Waypoint	Direction	Photo no.	Photograph	Comments / Description
30	Close-up	P5200086		Zoomed in - barren sand
Start of T2 (Proposed cable route)	North	P5200016		From rock armour at top of shore
Start of T2 (Proposed cable route)	East	P5200017		From rock armour at top of shore
Start of T2 (Proposed cable route)	West	P5200018		From rock armour at top of shore

Waypoint	Direction	Photo no.	Photograph	Comments / Description
5	North	P5200019		From start of barren sand
5	East	P5200020		From start of barren sand
5	West	P5200021		From start of barren sand
6	North	P5200022		Mid shore - barren sand

Waypoint	Direction	Photo no.	Photograph	Comments / Description
6	East	P5200023		Mid shore - barren sand
6	South	P5200024		Mid shore - barren sand
6	West	P5200025		Mid shore - barren sand
6	Close-up	P5200026		Zoomed in - barren sand

Waypoint	Direction	Photo no.	Photograph	Comments / Description
7	North	P5200027		Fresh water stream running down shore
8	North	P5200028		Start of fresh water stream - top of shore
9	North	P5200029		Bare sand and boulders with <i>Enteromorpha</i> spp.
9	Close-up	P5200030		Zoomed in - <i>Enteromorpha</i> spp. on bare sand and boulders

Waypoint	Direction	Photo no.	Photograph	Comments / Description
10	North	P5200031		Edge of rocky outcrop
10	Close-up	P5200032		Boulder with Semibalanus balanoides, Porphyra spp. and Enteromorpha spp.
10	Close-up	P5200033		<i>Semibalanus balanoides, Enteromorpha</i> spp. <i>and Porphyra</i> spp.
10	Close-up	P5200034		Semibalanus balanoides, Mastocarpus stellatus, Fucus serratus and Enteromorpha spp.

Waypoint	Direction	Photo no.	Photograph	Comments / Description
11	South	P5200035		From lower shore - rocky outcrop
11	East	P5200036		From lower shore - rocky outcrop
11	West	P5200037		From lower shore - rocky outcrop
11	Close-up	P5200038		Semibalanus balanoides, Nucella lapillus, Patella vulgata, Fucus serratus, Enteromorpha spp. and Mastocarpus stellatus

Waypoint	Direction	Photo no.	Photograph	Comments / Description
27	North	P5200080		From lower shore - rocky outcrop
27	South	P5200081		From lower shore - rocky outcrop
27	Close-up	P5200082		Semibalanus balanoides, Mastocarpus stellatus, Enteromorpha spp., and Cladophora spp.
28	Close-up	P5200083		<i>Mastocarpus stellatus, Laminaria digitata, Enteromorpha</i> spp. and <i>Fucus serratus</i>

Waypoint	Direction	Photo no.	Photograph	Comments / Description
29	South	P5200084		From low water mark
12	Close-up	P5200039		Lugworm cast
13	North	P5200040		Pipeline running down shore
13	Close-up	P5200041		<i>Porphyra</i> spp. and <i>Enteromorpha</i> spp. on pipe

Waypoint	Direction	Photo no.	Photograph	Comments / Description
13	Close-up	P5200042		Lugworm casts in rippled sand beside pipe
14	Close-up	P5200043		Sand martin nesting site
Start of T1 (West of proposed cable route)	North	P5200044		From rock armour at top of shore
Start of T1 (West of proposed cable route)	East	P5200045		From rock armour at top of shore

Waypoint	Direction	Photo no.	Photograph	Comments / Description
Start of T1 (West of proposed cable route)	West	P5200046		From rock armour at top of shore
15	North	P5200047		Start of barren sand
15	East	P5200048		Start of barren sand
15	West	P5200049		Start of barren sand

Waypoint	Direction	Photo no.	Photograph	Comments / Description
15	South	P5200050		Start of barren sand
16	Close-up	P5200051		Small strip of rippled sand
17	North	P5200052		Start of rocky boulder zone
17	East	P5200053		Start of rocky boulder zone

Waypoint	Direction	Photo no.	Photograph	Comments / Description
17	South	P5200054		Start of rocky boulder zone
17	West	P5200055		Start of rocky boulder zone
17	Close-up	P5200056		Lugworm casts, <i>Enteromorpha</i> spp.
17	Close-up	P5200057		Boulders and sand with <i>Enteromorpha</i> spp. and <i>Porphyra</i> spp.

Waypoint	Direction	Photo no.	Photograph	Comments / Description
17	Close-up	P5200058		Boulders and sand with <i>Enteromorpha</i> spp. and <i>Porphyra</i> spp.
18	North	P5200059		Start of sand patch
18	East	P5200060		Start of sand patch
18	South	P5200061		Start of sand patch

Waypoint	Direction	Photo no.	Photograph	Comments / Description
18	West	P5200062		Start of sand patch
19	North	P5200063		End of sand patch - low tide mark
19	East	P5200064		End of sand patch - low tide mark
19	South	P5200065		End of sand patch - low tide mark

Waypoint	Direction	Photo no.	Photograph	Comments / Description
19	West	P5200066		End of sand patch - low tide mark
20	West	P5200067		Edge of sand patch - beginning of rocky outcrop
20	Close-up	P5200068		Boulder with Enteromorpha spp. and Porphyra spp.
21	Close-up	P5200069		Boulders with <i>Fucus</i> <i>vesiculosus, Fucus</i> <i>serratus, Nucella</i> <i>lapillus, Patella</i> <i>vulgata</i> and <i>Semibalanus</i> <i>balanoides</i>

Waypoint	Direction	Photo no.	Photograph	Comments / Description
22	Close-up	P5200070		Osmundea hybrida, Fucus serratus, Enteromorpha spp. and Semibalanus balanoides
22	Close-up	P5200071		Fucus serratus
23	Close-up	P5200072		Fucus serratus, Corallina officinallis and Mastocarpus stellatus
24	Close-up	P5200073		Fucus serratus, Laminaria digitata and Mastocarpus stellatus

Waypoint	Direction	Photo no.	Photograph	Comments / Description
24	Close-up	P5200074		Fucus serratus, Palmaria palmata
26	East	P5200076		Rocky outcrop - low water mark
26	South	P5200077		Rocky outcrop - low water mark
26	West	P5200078		Rocky outcrop - low water mark

Waypoint	Direction	Photo no.	Photograph	Comments / Description
26	Close-up	P5200079		<i>Laminaria digitata, Fucus serratus</i> and <i>Palmaria palmata</i>

Modified Transmission Infrastructure for Telford, Stevenson and MacColl Wind Farms

Appendix 4 Figures

Source: Eari, DiglialGlobe, GeoEye, i-cubed, USDA, USGS, AEX, Getmapping, Rerogrid, IGN, IGP, suvisstopo, and the GIS User Community Source: Eari, DiglialGlobe, GeoEye, i-cubed, USDA, USGS, AEX, Getmapping, Rerogra and sub-contractors and shall not be reproduced nor transmitted without prior written approval.

Source: Earl, <mark>Digliablobe,</mark> GeoEye, i-cubed, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, suisstopo, and the GIS User Community Moray Offshore Renewables Ltd © 2014. This document is the property of contractors and sub-contractors and snal

moray offshore renewables Itd

Developing Wind Energy In The Outer Moray Firth

Environmental Statement

Modified Transmission Infrastructure for Telford, Stevenson and MacColl Wind Farms

Technical Appendix 4.2 B

Salmon and Sea Trout Ecology and Fisheries

This document was produced by Brown and May Marine on behalf of Moray Offshore Renewables Ltd

Brown & May Marine

Document Owner		Brown and May Marine					
Docume	ent Status	F	Final				
File	Name	Salmon and Sea Tr	rout Technical	Report			
Revision	Date	Description	Originated By	Checked By	Approved By		
A1	09/06/2014	Draft V001	JL	CF	SJA		
A2	22/06/2014	Final	JL	CF	MORL		

moray offshore renewables limited 4th Floor 40 Princes Street Edinburgh EH2 2BY

Tel: +44 (0)131 556 7602

Table of Contents

1	Intro	Introduction4					
2	Met	ethodology4					
	2.1 2.2 2.3 2.4	Data and Information Sources Data & Information Sensitivities, Limitations and Gaps Consultation Study Area					
3	Salr	non & Sea Trout Ecology	8				
	3.1 3.2 3.3	Introduction Life Cycle and Ecology: Overview Conservation Status					
4	Salr	non & Sea Trout Fisheries					
	4.1 4.2 4.3	Introduction Salmon and Sea Trout Fisheries in the Regional Study Area Salmon and Sea Trout Fisheries in the Local Study Areas					
5	Refe	erences					

1 Introduction

This technical report provides site specific information relating to the ecology, distribution and fisheries of salmon (*Salmo salar*) and sea trout (*Salmo trutta*) in areas relevant to the Modified Transmission Infrastructure (Modified TI) of the three consented wind farms (Telford, Stevenson and MacColl Offshore Wind Farms). The focus of the report is on those Salmon Fisheries Districts (SFDs) relevant to the proposed location of the Modified TI.

More detailed information regarding ecology, conservation status and fisheries located within other districts within the Moray Firth salmon fishery region can be found within the report (Appendix 9.3B) submitted as part of the Environmental Statement (ES) detailing the Telford, Stevenson and MacColl offshore wind farms in August 2012 (MORL, 2012).

2 Methodology

In the absence of standard practice or guidance by which to establish salmon and sea trout ecology and fisheries baseline assessments in relation to transmission infrastructure associated with offshore wind farm developments, a number of information and data sources have been used, which are detailed below.

2.1 Data and Information Sources

- Marine Scotland Science (MSS) (Freshwater Laboratory)
- Scottish Natural Heritage (SNH)
- Joint Nature Conservation Committee (JNCC)
- Centre for Environment Fisheries and Aquaculture Science (CEFAS)
- Association of Salmon Fishery Boards (ASFB)
- Rivers and Fisheries Trusts of Scotland (RAFTS)
- District Salmon Fishery Boards (DSFB)
- Salmon Net Fishing Association of Scotland (SNFAS)
- Atlantic Salmon Trust (AST)
- Moray and Pentland Firth Salmon protection group
- Moray Firth Sea Trout Project (MFSTP)
- Scientific papers and other relevant publications

2.2 Data & Information Sensitivities, Limitations and Gaps

2.2.1 MSS Salmon & Sea Trout Fisheries Catch Statistics

Each fishery in Scotland is required to provide the number and total weight of salmon, grilse and sea trout caught and retained in each month of the fishing season. In this context, the term salmon refers to multi-sea-winter salmon (MSW) whilst grilse refers to one-sea-winter salmon (1SW).

The catch data used for the purposes of this assessment are as reported by the fishery. Where there are no records of reported catches, it has been assumed that no fish have been caught. It is recognised that there may be a small degree of error within the catch dataset due to misclassification of fish between the grilse and salmon categories. There may also be errors as a result of misreporting of catches. The data used are as provided by Marine Scotland Science (MSS) in May 2014.

Rod and line fisheries are also required to provide the monthly numbers and total weight of salmon, grilse and sea trout caught and released back into the river ("catch and release"). As a result, MSS catch data for the rod and line fishery is broken down into two categories, "rod and line" (e.g. retained) and "catch and release" (e.g. released). Note that the total catch by the rod and line fishery is in effect the sum of the catches recorded in both categories. Where appropriate, data from both categories have been combined to give an indication of the total rod and line catch. Similarly, the catch by net and coble and fixed engines (bag and stake nets) has been combined in some instances to provide an indication of the total catch by the net fishery.

The analysis of fisheries statistics given below is not an assessment of the abundance or state of the stocks but provides an indication of the underlying population trends and relative importance of the fisheries of salmon and sea trout by region and fishery district in Scotland. The critical time for fisheries does not necessarily represent critical times for salmon and sea trout movement. In addition, catch data is limited in terms of presenting an accurate baseline of fish populations and fish migration outside of the time of fisheries. This is also the case for rod-and-line catches which do not account for the closed season giving no effort value.

The catch data used in this report are Crown copyright, used with the permission of MSS. MSS is not responsible for interpretation of these data by third parties. In addition, please note that the 2013 statistics included within this report are provisional.

2.2.2 Salmon Fishery Regions and Districts

Each Salmon Fishery District (SFD) applies its own voluntary or statutory conservation code, closure times, policies and regulations. Each SFD also has different management and conservation schemes (e.g. hatcheries, fish counters, water quality control and monitoring schemes). In addition, different districts include varying numbers of rivers and tributaries within their jurisdictions and have different catchment areas.

The boundaries of the salmon fishery regions and districts could not be provided by MSS as GIS data layers, this is due to third party copyright ownership of these data. The district and region boundaries shown in the charts provided in this report were produced by geo-referencing a raster image and should therefore be taken as approximate and for illustrative purposes only.

2.2.3 Data Gaps

There is insufficient information available at present to define the migratory routes and patterns of Scottish salmon and sea trout at the spatial resolution ideally required in this assessment. In addition, there is no detailed information regarding the possibility for the area covered by the Modified TI to be used by these species in other ways. This is particularly relevant for sea trout as marine migration is generally more localised and sea trout could potentially use the area of the Modified TI and its vicinity for extended periods of time when feeding.

Furthermore, the available data and information do not allow for the numbers and the origin of the fish potentially migrating through or near the area in which the Modified TI is located to be estimated or otherwise quantified.

2.3 Consultation

Consultation questionnaires were circulated to all the District Salmon Fishery Boards (DSFBs) in Scotland through the Association of Salmon Fishery Boards (ASFB) and to netsmen through the Salmon Net Fishing Association of Scotland (SNFAS) in 2011. In addition to questionnaires, consultation was also undertaken with individual DSFBs and associated organisations. Since submission of the applications for the now consented offshore wind farms, MORL has had regular and ongoing consultation with the ASFB, Moray Firth Sea Trout Project (MFSTP), Moray and Pentland Firths Salmon Protection Group (MPFSPG) and last met with representatives of these groups in May 2014.

A summary of information regarding salmon fisheries in the Spey and Deveron SFDs, within which the Modified TI makes landfall, was provided to DSFB staff at these organisations in June 2014 to check that the information gathered during previous consultation during 2011 was still relevant.

A full list of consultees and a template of the consultation questionnaires used are provided within Appendix 9.3B submitted as part of the previous Environmental Statement (ES) detailing the Telford, Stevenson and MacColl offshore wind farms in August 2012. As described above dialogue has been ongoing since submission of these applications.

MORL also sits on both the steering and the stakeholder groups for MSS's National Research and Monitoring Strategy for Diadromous Fish (NRMSDF). This is a strategy group led by MSS to investigate the potential for interactions between diadromous fish and wind, wave and tidal renewable energy developments through consultation and research. As part of this group, MORL is contributing to helping to develop a research plan to increase knowledge regarding the behaviour of diadromous fish in the Moray Firth region and around the wider Scottish coast.

2.4 Study Area

For the purposes of the assessment two study areas have been defined:

• A regional study area, that focuses on all the Salmon Fisheries Districts in the Moray Firth; and

A local study area that focuses exclusively on the Salmon Fisheries Districts where the landfall of the Modified TI is located: the Spey and Deveron districts

Figure 2.1 Salmon and Sea Trout study area

3 Salmon & Sea Trout Ecology

3.1 Introduction

Atlantic salmon and sea trout are anadromous migratory species of the family Salmonidae. Anadromous species spend a significant proportion of their life history in marine habitats and migrate to freshwater to spawn. Salmon and sea trout fisheries exploit the migratory behaviour of both species by intercepting fish in both rivers and coastal waters.

Atlantic salmon are widely distributed within the northeast Atlantic, occupying diverse biological and physical environments from northern Portugal to Finland (Klemetsen *et al.*, 2003). The UK component constitutes a significant proportion of the stock in European Union (EU) waters. Salmon are found in over 300 UK rivers, where the size of the runs often exceeds 1000 individuals per annum (JNCC, 2010).

Sea trout are anadromous brown trout and the migratory and non- migratory forms are recognised as a single species. The mechanisms controlling anadromy in brown trout are not fully understood but involve both genetic and environmental components (Malcolm et al., 2010). The geographical range of brown trout is widespread; from Corsica, Sardinia and Sicily in the south to Iceland, Scandinavia and Russia in the north (Klemetsen et al., 2003).

The anadromous form is frequently found in brown trout populations with free access to the marine environment (Klemetsen et al., 2003). Accordingly, sea trout are found in suitable rivers throughout the geographical range of the species. Atlantic salmon and sea trout share many ecological similarities and frequently co-exist in UK rivers. The life cycles of both species are broadly similar with the exception of differences in the temporal scale of marine feeding migration.

3.2 Life Cycle and Ecology: Overview

Spawning of salmon and sea trout occurs in the upper reaches of rivers during late autumn and winter when females cut nests (known as a 'redds') in gravelly substrates in which the eggs are deposited (NASCO, 2012). Larvae ('alevin') hatch the following spring, feeding on an attached yolk sac before progressing to feeding on invertebrate prey at which point they are known as 'fry'. At the end of their first summer of feeding juveniles are known as 'parr' (Potter & Dare, 2003).

After spending one to five years in freshwater, salmon and sea trout parr undergo 'smolting'; a process of physiological and morphological changes which prepare for ocean entry (McCormick et al., 1998). Through late March to June smolts migrate down river and enter the ocean where they are known as 'post smolts', until the middle of their first winter at sea. A summary of the timing of smolt runs in Moray Firth rivers is provided in Table 3.1.

Salmon grow rapidly in the marine environment and return to their natal rivers as adults after spending between one to five years at sea. The marine diet typically comprises a high proportion of fish such as sandeels (Ammodytidae) and clupeids including herring (*Clupea harengus*) and sprat (*Sprattus Sprattus*) (Fraser, 1987; Reddin, 1985; Hyslop & Webb, 1992; Jacobsen & Hansen, 2001).

Time spent feeding at sea varies within and among salmon populations and different cohorts may return at different times of the year, spawning in different areas of the natal river (Klemetsen et al., 2003; Potter & Dare, 2003).

The majority of grilse tend to enter the river from early summer- autumn. Numbers of MSW fish will also begin upstream migration at this time, although smaller numbers of this stock component may begin to ascend the river as early as the autumn of the year before spawning. These larger, earlier running individuals are particularly prized by anglers who refer to them as 'spring' run fish.

Sea age structure of populations differs between Scottish coasts; in the smaller rivers on the west coast runs tend to be dominated by grilse, whilst higher numbers of MSW are found in populations from rivers on the north and east coasts (Malcolm et al., 2010). In addition, significant changes have been observed in the timings of salmon runs in rivers in Scotland and elsewhere in the UK in recent years.

This is manifest as a shift from spring-summer to summer-autumn runs (Gough et al., 1992; Milner et al., 2000; Aprahamian et al., 2008). In most rivers the change in run timing has also been associated with a decrease in the proportion of MSW fish in the annual run (Aprahamian et al., 2008; Environment Agency & Cefas, 2011). In Scottish (and other UK rivers) these observations have led to a number of conservation measures aimed at protecting the MSW stock component, including blanket catch and release policies, and delays to the start of both recreational and commercial fishing seasons.

The majority of salmon perish after spawning. The small proportion (around 5%) that survive are known as 'kelts' (Thorstad et al., 2008).

The life cycle of sea trout is similar to that of salmon. Sea trout marine migration is however shorter than that of Atlantic salmon, characterised by movements on smaller spatial scales occurring closer to natal rivers. A smaller proportion of individuals may undertake long distance offshore migration during marine feeding (Kallilo- Nyberg et al., 2001). In comparison to salmon, diet may be more varied with a higher occurrence of benthic invertebrates in addition to fish (Fahy, 1987).

Immature smolts that return to freshwater to overwinter after a short spell of feeding at sea and are known regionally known as 'whitling', 'finncok' or 'herling' (Malcolm et al., 2010). A further component of the stock referred to as 'maidens' do not return to freshwater to spawn until at least a year after migration (Gargan et al., 2004).

Sea trout migrate back to the sea in the spring, both as spawned kelts and immature fish that have overwintered without spawning. In contrast to salmon, post spawning survival rates are high in sea trout and repeat, annual spawning is common (Gargan et al., 2004).
District Salmon Fishery Board	Timing of Smolt Run
Spey (Local Study Area)	April-May (sometimes into early June).
Deveron (Local Study Area)	Mid-March to end of May (rarely into June). Migration in upper reaches can start in 2 nd week in March. Sea trout broadly similar.
Cromarty Firth (Conon and Alness Districts)	May.
Ness and Beauly	April to June.
Helmsdale	May.
Caithness (Berriedale, Dunbeath and Wick Districts)	Mid April to mid-May with some earlier running smolts and a good number through June also.
Lossie	May, peaking towards the end of the month and finishing in early June.
Kyle of Sutherland	Spring and Autumn.

Table 3.1 Timing of Smolt Runs as defined by District Salmon Fishery Boards during Consultation (2011, 2014)

3.3 Conservation Status

Atlantic salmon is listed in Annexes II and V of the EU Habitats Directive as a species of European importance and Annex III of the Bern Convention. The protection given to salmon through the Habitats Directive however, is restricted to freshwater habitats, as marine and estuarine sites are excluded from selection. Similarly, salmon at sea are not protected under the Bern Convention.

Through the implementation of the Habitats Directive and as a result of the European importance of Scotland's salmon populations, 11 Scottish rivers have been designated as Special Areas of Conservation (SACs), with salmon being a primary reason for the selection of the sites. SAC Rivers within the Moray Firth and wider area for which salmon is a primary or qualifying feature are shown in Figure 3.1. Of these there is one within the Local Study Area, the River Spey, where the salmon population is considered of high quality.

Further to the protection given under the EC Habitats Directive, Atlantic salmon is listed as a UK Biodiversity Action Plan (BAP) priority species and is protected at the international level by the North Atlantic Salmon Conservation Organization (NASCO), an inter-governmental organisation devoted to the conservation, restoration, enhancement and rational management of wild salmon in the North Atlantic (Curd, 2010).

Sea trout is not subject to the same level of protection as salmon in Europe although it is also listed as a UK BAP priority species. In addition, as a result of the definition of the term salmon in the Scottish legislation, sea trout is currently protected at the same level as Atlantic salmon in Scotland. Under the Salmon (Scotland) Act (1986) the terms salmon means: *"all migratory fish of the species Salmo salar and Salmo trutta and commonly known as salmon and sea trout respectively or any part of any such fish".* In addition, the marine phase of the life cycle of both Atlantic salmon and sea trout is included in the draft list of Priority Marine Features (PMF) in Scottish coastal waters compiled by SNH. The population dynamics of another species of conservation importance, the freshwater pearl mussel (*Margaritifera margaritifera*), is closely linked to the presence of salmonids in the rivers (JNCC, 2011). During the larval stage *M. margaritifera* attaches itself to the gills of salmonids in river in mid to late summer. The following spring it drops off its host to settle in the riverbed gravel where the juvenile grows into an adult. Freshwater pearl mussels are protected under the Wildlife and Countryside Act (1981) of Great Britain and listed as UK BAP Priority Species (UKBAP, 2011) and also listed on Annexes II and V of the EC Habitats Directive and Appendix III of the Bern Convention (Bern Convention, 2011; EC, 2011).

Recent declines in freshwater pearl mussel populations have been caused by factors such as pearlfishing, pollution, acidification, organic enrichment, siltation, river engineering and declining salmonid stocks (JNCC, 2011). Pearl mussel are the primary reason for selection of four SACs in the Moray Firth: the Evelix, the Oykel, the Moriston and the Spey. In the Spey the population is estimated at several million and is considered of international significance (JNCC, 2011).

The distribution of sea lamprey (*Petromyzon marinus*), also a primary reason for selection of the River Spey SAC, is largely dictated by the distribution of their host (Waldman et al., 2008). At sea, lamprey feed on a variety of marine mammals and fish, including salmon, shad, herring, pollock, cod, haddock, swordfish and basking sharks (Kelly & King, 2001, ter Hofstede et al., 2008). Lamprey is listed as Annex III species in the Bern Convention and Annex II species in the Habitats Directive. Furthermore, the species has been listed as Priority Marine Feature (PMF) in Scottish territorial waters, in the UKBAP priority list and in OSPARs list of threatened and/or declining species and habitats.

Figure 3.1 Distribution of SACs for Atlantic salmon (Note: River Deveron is also shown but is not a designated SAC)

4 Salmon & Sea Trout Fisheries

4.1 Introduction

Salmon and sea trout are an important part of Scotland's natural and cultural heritage and support commercial and recreational fisheries. These fisheries are of significant of importance to the Scottish economy: research commissioned by the Scottish Executive (Radford et al., 2004) estimated that game and coarse anglers spent a total of £131m in Scotland of which 65% (£73m) corresponded to salmon and sea trout fishing. A similar study undertaken in the Spey (Riddington et al., 2004) calculated that in 2003 the expenditure by salmon anglers generated £11.8 million and supported 367 full-time equivalent jobs in the catchment. Extrapolation of these results to all Moray Firth rivers indicates that angling generated approximately £28.8 million in the area (Butler, 2004). In the Kyle of Sutherland, Radford et al., (2007) estimated that angling related tourism was worth £3.37 million annually to the local economy (KSFT, 2007; Consultation Meeting, 2011b).

Detailed information regarding salmon fishing rights, administration and regulations is provided in the report (Appendix 9.3B) submitted as part of the previous Environmental Statement (ES) detailing the Telford, Stevenson and MacColl offshore wind farms in August 2012.

4.2 Salmon and Sea Trout Fisheries in the Regional Study Area

An indication of the annual reported catch by species and method in the regional study area is given in Table 4.1 and Table 4.2 respectively, expressed as the number of individuals caught by district (average 2004 to 2013).

Salmon and grilse account for the majority of the catch in all districts, with the exception of the Lossie, where sea trout is the principal species caught. Catches from the Spey and Deveron districts contribute the two highest proportions to the total salmon and sea trout catch from all Moray Firth Districts (32.7% and 13.5%, respectively). An overview of the salmon and sea trout fisheries, specific to the Spey and Deveron districts is given in Section 4.3.

District	Grilse	Salmon	Sea Trout	Total	Percentage of total Salmon and Sea Trout Catch (%)
Spey	2,998	5,897	2,152	11,046	32.7%
Deveron	1,548	2,291	720	4,559	13.5%
Kyle of Sutherland	1,902	1,753	507	4,162	12.3%
Findhorn	1,205	1,577	126	2,908	8.6%
Helmsdale	923	1,188	158	2,270	6.7%
Conon	1,119	531	203	1,852	5.5%
Beauly	842	489	175	1,506	4.5%
Ness	667	739	57	1,462	4.3%
Nairn	684	236	103	1,022	3.0%
Brora	189	418	193	800	2.4%
Wick	595	141	16	752	2.2%
Alness	447	165	37	650	1.9%
Lossie	152	45	185	381	1.1%
Berriedale	101	98	6	205	0.6%
Dunbeath	66	74	15	154	0.5%

Table 4.1 Annual Average Catch by Species and District (2004 to 2013)

The principal fishing method in the regional study area is rod-and-line and is the only method used in a number of districts, including the Spey and the Deveron

It can be seen that the proportion of fish released exceeds that retained in most Moray Firth districts. Netting by both fixed engines and net-and-coble occurs to a lesser extent and is now only practiced in six of the 15 districts for which data are given. A fixed engine fishery commenced operation on the Deveron in 2012, of which more detail is provided on this fishery in section 4.3. Up until 2012 there had been no fixed engine fishery in this district for a number of years.

District	Rod and Line (Catch & Release)	Rod and Line (Retained)	Fixed Engine	Net and Coble	Total	Percentage of total Salmon and Sea Trout Catch (%)	
Spey	7,876	3,170	0	0	11,046	32.7%	
Deveron	2,281	1,899	378	0	4,559	13.5%	
Kyle of Sutherland	3,031	910	187	35	4,162	12.3%	
Findhorn	1,834	1,074	0	0	2,908	8.6%	
Helmsdale	1,530	740	0	0	2,270	6.7%	
Conon	1,047	519	211	75	1,852	5.5%	
Beauly	1,049	457	0	0	1,506	4.5%	
Ness	683	553	0	226	1,462	4.3%	
Nairn	379	644	0	0	1,022	3.0%	
Brora	513	288	0	0	800	2.4%	
Wick	205	547	0	0	752	2.2%	
Alness	338	312	0	0	650	1.9%	
Lossie	153	228	0	0	381	1.1%	
Berriedale	91	78	0	36	205	0.6%	
Dunbeath	38	90	0	27	154	0.5%	

Table 4.2 Annual Average Catch by Method and District (2004 to 2013)

Figure 4.1 and Figure 4.2 provide an indication of the annual variation in fishing effort utilising the net-and-coble fishery and the fixed engine fishery statistics by effort as provided by MSS for the years 2004-2013. In both cases, the data for 2013 is provisional.

As shown in Figure 4.1, net and coble effort has been variable between 2004 and 2013. Effort in the Ness has declined severely from 11 in 2004 to one in 2013 whereas effort in the Conon has remained relatively stable at between four and seven per year. Effort in the Kyle of Sutherland had declined to zero in 2012 but has increased again in 2013. Effort in the Halladale and Kyle of Sutherland have remained stable from 2008 to 2013, whereas effort in the Deveron has changed dramatically increasing from zero in 2004-2011 to 33.5 in 2013. Effort in the Strathy has shown a general decline from 30 in 2004 to 20 in 2013.

Figure 4.1 Annual Net and Coble Effort (Max. crew) by SFD (2004-2013) (Source: MSS, 2014)

Figure 4.2 Annual Fixed Engine Effort (Max. no. pots) by SFD (2004-2013) (Source: MSS, 2014)

4.3 Salmon and Sea Trout Fisheries in the Local Study Areas

4.3.1 The Spey

Nets used at the mouth of the Spey were bought out by the Board and other conservation organisations in 1993 and as a result, there are no operational coastal netting stations in the district. Rod-and-line is now the only method currently used in the Spey district. There is a voluntary conservation policy in place which has delivered increasing release rates. In 2013, 88% of salmon and 76% of sea trout were released (Consultation, 2014). Figure 4.3 shows the progression of catch and release rates in the Spey (Spey Fisheries Board, 2014).

The seasonality of the fishery is shown in Figure 4.3, based on averaged monthly catches by species (2004-2013). The salmon rod and line fishery runs from 11th February to the 30th September (Consultation Meeting, 2011d). Overall, the highest total catches in the district (all species) are recorded from June to August inclusive followed by May and then September.

Salmon are principally caught from May to September. March and April record relatively high salmon catches reflecting the diversity of salmon stock components in the river. Grilse catches are highest in July and August.

The highest sea trout catches are recorded in June and July with low number in the earlier months of the season (Figure 4.4).

Figure 4.3 Proportion of rod-caught wild salmon and sea trout released on the river Spey (1998-2013) (Spey fisheries board, 2014)

Figure 4.4 Seasonality of Rod and line Reported Catch (average 2004-2013) in the Spey (Source: MSS, 2014)

4.3.2 The Deveron

The Deveron is primarily a salmon river although sea trout are important during the summer months (Consultation, 2011). From 1991 to 2012, rod and line was the only method used in this district. Although the majority of the netting rights were bought out in 1991, two redundant netting stations have recently been purchased by USAN fisheries Ltd and are now active.

The port of operation for this fishery is Gardenstown and the bag nets are located at More Head in the Moray Firth and further east at Crovie Head (pers. comm, R.Miller Deveron Boga and Isla Rivers Trust, 29.05.2014). There is also a clause in place that allows the netting stations bought and decommissioned in the Deveron district by the Atlantic Salmon Conservation Trust and Deveron District Salmon Fishery Board to be used for scientific purposes (pers. comm. Deveron Salmon Fisheries Board, 2014). Total combined catches (salmon, grilse, and sea trout) from the commercial stations for the past two years were 1233 (in 2012) and 2254 (in 2013). Catches of salmon in this fishery are considerably greater than sea trout.

The seasonality of the rod and line catch by species is given in Figure 4.4 based on monthly reported catches by species (average 2004-2013). The period from August to October records the highest total catches (all species combined). Sea trout are caught in highest numbers in June and July. Grilse catches peak in August, although July, September and October also record relatively high numbers. Salmon are caught throughout the season with higher catches recorded in September and October.

The salmon and sea trout rod and line season is open from 11th February to 31st October (Consultation, 2011). All salmon and grilse must be released up to the end of May whereas after the

1st June one male salmon or grilse under 10lbs can be kept per day with a maximum of two fish per rod per week. In the case of sea trout all must be released throughout the season (pers. comm. Deveron Salmon Fisheries Board, 2014).

Sea trout smolts from the Deveron migrate out of the river at the end of March/April (broadly similar to the time of salmon smolts leave the river) and adults feed in grounds off the coast from March until September. Sea trout return to the rivers throughout this period, although most individuals return later in the year, around August, close to the spawning season (Consultation Meeting, 2011b).

Figure 4.5 Seasonality of Rod and line Reported Catch (average 2004-2013) in the Deveron

5 References

Aprahamian, M.W., Davidson, I.C., Cove. R.J. 2008. Life History changes in Atlantic salmon from the River Dee, Wales. Hydrobiologia (602): 61-78.

Butler, J.R.A. 2004. Moray Firth Seal Management Plan. A Pilot Project for Managing Interactions Between Seals and Salmon in Scotland. On behalf of the Moray Firth District Salmon Fishery Boards.

Consultation (2011) Deveron DSFB Consultation Questionnaire.

Consultation Meeting (2011a) Deveron DSFB 30/04/2011.

Consultation Meeting (2011b) Deveron DSFB 22/09/2011.

Crawley, D., 2010. Report of the Scottish Mixed Stock Salmon Fisheries Working Group. Report by the Steering Group of the Freshwater Fisheries Forum. 110pp.

Environment Agency & Cefas, 2011. Annual Assessment of Salmon Stocks and Fisheries in England and Wales 2010. Preliminary assessment prepared for ICES, March 2011. Environment Agency, Bristol.

Fahy, E. 1985. Feeding, growth and parasites of trout *Salmo trutta* L. from Mulroy Bay, an Irish Sea Lough. Irish Fisheries Investigations. SERIES A (Freshwater). No. 25. Department of Fisheries and Forestry. Dublin.

Fraser, P.J. 1987. *Salmo salar* L. Feeding in Scottish coastal waters. Aquaculture Research (18): 243-247.

Gargan, P.G., Roche, Forde, G.P., and Ferguson, A. 2004. Characteristics of the sea trout (*Salmo trutta* L.) Stocks from the Owengola and Invermore fisheries, Connemara, Western Ireland, and recent trends in marine survival pp 60-76. In sea trout biology: conservation and management: proceedings of the first international sea trout symposium (eds G. Harris & N. Milner). Blackwell, London.

Galbraith, R.D. and Rice, A., 2004. An introduction to commercial fishing gear and methods used in Scotland. Scotlish Fisheries information Pamphlet. No.25. Aberdeen. FRS Marine Laboratory.

Gough, P.G., Winstone, A.J., and Hilder, P.G. 1992. Spring salmon, a review of factors affecting the abundance and catch of spring salmon from the wye and elsewhere, and proposals for stock maintenance and enhancement. National Rivers Authority Welsh Region Technical Fisheries Report No 2. National Rivers Authority, Bristol.

Hyslop, J.R.G and Webb, J.H. 1992. Escaped farmed Atlantic salmon, *Salmo salar* L., feeding in Scottish coastal waters. Aquaculture Research (23): 721-723.

Jacobsen, J.H. and Hansen, L.P. 2001. Feeding habits of wild and escaped farmed Atlantic salmon, Salmo salar L., in the North East Atlantic. ICES Journal of Marine Science. (58):916-933.

JNCC. 2010. Atlantic salmon. Available online at: http://www.jncc.gov.uk/ProtectedSites/SAC selection/species.asp accessed on 16.5.2014

Kallilo- Nyberg, I. Saura, A and Ahlfors, C. 2001. Sea migration patterns of two sea trout (*Salmo trutta*) stocks released in the Gulf of Finland. Ann. Zool. Fennichi. (39) 221-235.

Klemetsen, A., Amundsen, P-A., Dempson, J.B., Jonsson, B., Jonsson, N., O' Connell, M.F. and Mortensen, E. 2003. Atlantic salmon *Salmo salar* (L)., brown trout *Salmo trutta* (L) and Arctic charr *Salvelinus alpinus* (L): a review of aspects of their life histories. Ecology of Freshwater Fish (12): 1-59

Malcolm, I.A., Godfrey, J. and Youngson, A.F. 2010. Review of migratory routes and behaviour of Atlantic salmon, sea trout and European eel in Scotland's coastal environment: Implications for the development of marine renewable. Environmental Research Institute, Thurso. Published by Marine Scotland Science. ISSN: 2043-7722.

McCormick S., Hansen L., Quinn T. and Saunders R. 1998. Movement, migration, and smolting of Atlantic salmon (*Salmo salar*). Canadian Journal of Fisheries Aquatic Science (55):77-92.

Milner, N., Davidson, I.C., Wyatt., and Aprahamian, M.W. 2000. The application of biological targets to the management of salmon recreational fisheries in England and Wales. In (Cowyx, I.G. ed), Management and Ecology of River Fisheries. Fishing News Book, Oxford: 361-372.

NASCO. 2012. The Atlantic Salmon. Available on line at: http://www.nasco.int/atlanticsalmon.html accessed on 17.5.2014

Potter, E.C., and Dare, P.J. 2003. Research on migratory salmonids, eel and freshwater fish stocks and fisheries. Sci. Ser. Tech Rep., CEFAS, 119: 64pp.

Potter, E.C., and Ó Maoiléidigh, N., 2006. Review of Mixed Stock Fisheries for Atlantic Salmon in European Community Waters, excluding the Baltic Sea.

Radford, A., Riddington, G., Anderson, J., and Gibson, H., 2004. The Economic Impact of Game and Coarse Angling in Scotland. Research Report produced for the Scottish Executive. ISBN 0 7559 4184 5.

Reddin, D.G. 1988 Atlantic salmon (*Salmo salar*) on and East of the Grand Bank. 1988. Journal of the North western Atlantic Fisheries Society (96): 157-164.

Riddington, G., Radford, A., Anderson, J. and Higgins, P. 2004. An Assessment of the Economic Impact of Water-related Recreation and Tourism in the Spey Catchment in 2003. Division of Economics and Enterprise, Glasgow Caledonian University: Glasgow

SPICe, 2000. Salmon Conservation (Scotland) Bill. Scottish Parliament Information Centre. Research Paper 00-17. October 2000.

The Crown Estate, 2010. Scottish Salmon Fisheries available online at: http://www.thecrownestate.co.uk/scottish_salmon_fishings accessed on 16.5.2014

Thorstad, E.B., ØKland, F., Heggberget, T.H. and Aarestrup, K. 2008. Factors affecting the within-river spawning migration of Atlantic salmon, with emphasis on human impacts. Rev Fish Biol Fisheries (18): 345-371.

Williamson, R., 1991. Salmon Fishery in Scotland. Atlantic Salmon Trust. November 1991. Perth.

moray offshore renewables Itd

Developing Wind Energy In The Outer Moray Firth

Environmental Statement

Modified Transmission Infrastructure for Telford, Stevenson and MacColl Wind Farms

Technical Appendix 4.2 A Fish and Shellfish Ecology

This document was produced by Brown and May Marine Ltd on behalf of Moray Offshore Renewables Ltd

Brown & May Marine

Document Owner		Brown and May Marine Ltd								
Docume	ent Status	Final								
File	Name	al report								
Revision	Date	Description	Originated By	Checked By	Approved By					
A1	10/06/2014	Draft 1	JL	CF						
A2	22/06/2014	Final	JL	CF	MORL					

Moray Offshore Renewables Limited

4th Floor 40 Princes Street Edinburgh EH2 2BY

Tel: +44 (0)131 556 7602

Table of Contents

1	Introduction	. 4
2	Methodology	. 4
	 2.1 Guidance 2.2 Sources of Data and Information 2.3 Data sensitivities, Gaps and Limitations 2.4 Study Area 	4 5 5
3	Baseline Characterisation	7
	 3.1 Substrate Types 3.2 Species of Commercial Interest	. 7 . 8 10 29 29
4	References	32
	Appendices.Appendix 1 – Cod Survey ReportSummaryBackground InformationSurvey MethodologyTrip ATrip BSurvey VesselSampling GearSampling ProceduresOtter Trawl ResultsCodBy-catchReferencesAppendix 2 – Health and SafetyAppendix 3 – Survey LogAppendix 4 – Times and CoordinatesAppendix 5 – Examples of Spawning and Spent Cod	40 40 41 43 43 43 43 46 46 47 48 48 54 62 64 65 67 69

1 Introduction

This technical report provides site specific information regarding the ecology and distribution of fish and shellfish species in areas relevant to the modified offshore transmission infrastructure (modified TI) of the Telford, Stevenson and MacColl offshore wind farms. Further detail regarding the ecology, life cycle and behaviour of the key species identified can be found within the relevant sections of the Fish and Shellfish Ecology Technical Report (Appendix 9.3A) submitted as part of the previous Environmental Statement (ES) detailing the Telford, Stevenson and MacColl Offshore Wind Farms in August 2012.

For the purposes of this report fish and shellfish species have been described within four broad categories:

- Species of commercial interest;
- Species potentially using the development area as a spawning or nursery ground;
- Key prey species; and
- Species of conservation importance, including diadromous and elasmobranch species.

Given the socio-economic and conservation status importance of salmon and sea trout in Scotland, their ecology and fisheries have been described separately in a standalone document (Appendix 4.2B).

2 Methodology

2.1 Guidance

The following documents have provided guidance for the undertaking of the Fish and Shellfish Ecology baseline assessment:

- Strategic Environmental Assessment (SEA) of Draft Plan for Offshore Wind Energy in Scottish Territorial Waters: Volume I: Environmental Report (Marine Scotland, 2010);
- Habitats Regulations Appraisal of Draft Plan for Offshore Wind Energy in Scottish Territorial Waters. Appropriate Assessment Information Review (Marine Scotland, 2011);
- CEFAS Guidance Note for Environmental Impact Assessment in Respect of the FEPA and CPA Requirements (CEFAS 2004);
- Marine Scotland Science (MSS) Scoping Opinion; and
- Scottish Natural Heritage (SNH) and Joint Nature Conservation Committee (JNCC) Scoping Opinion.

2.2 Sources of Data and Information

Establishing an ecological baseline for fish and shellfish species requires an approach that incorporates a number of different data and information sources. The principal sources of data and information used to inform the report were as follows:

- Marine Management Organisation (MMO) Landings Data by ICES rectangle for the period 2003-2013;
- Fisheries Sensitivity Maps in British Waters (Coull *et al.*, 1998);
- Mapping spawning and nursery areas of species to be considered in Marine Protected Areas (Marine Conservation Zones). Report No 1 (Ellis *et al.*, 2010a);
- Marine Scotland Science (MSS) publications;
- International Council for the Exploration of the Sea (ICES) publications;
- Centre for Environment, Fisheries and Aquaculture (CEFAS) publications;
- Results of Benthic Surveys undertaken in the area (Fugro EMU, 2011 and 2014??XXX); and
- Other relevant research publications.

2.3 Data sensitivities, Gaps and Limitations

2.3.1 MMO Landings Data

ICES statistical rectangles are the smallest spatial unit used for the collation of fisheries statistics by the European Commission (EC) and Member States. The boundaries of ICES rectangles align to 1° of longitude and 30′ of latitude and are large in relation to the area occupied by the modified TI. In addition, fishing activity is rarely evenly distributed throughout the area of a rectangle. The analysis of the fisheries statistics provided below should therefore be taken in the context of the spatial limitations of the dataset.

Whilst landings data provide a good indication of the commercial species present by ICES rectangle, in some cases their relative abundance and importance may be misrepresented as a result of factors such as: low quota allocations, fluctuations in fishing effort, fisheries closures, changes in market demand, etc. In addition, the presence and distribution of fish and shellfish species are dependent on a number of biological and environmental factors that interact with each other in direct and indirect ways, and are subject to seasonal and annual variation.

2.3.2 Spawning and Nursery Grounds

The assessment of the area of the proposed modified TI as potential spawning and nursery grounds has primarily been undertaken using the charts provided in Coull *et al.* (1998) and Ellis *et al.* (2010a). It is acknowledged that whilst these are useful sources to identify broad scale spawning and nursery grounds, they do not delineate the exact location of grounds, especially in relation to discrete areas such as that occupied by the modified TI. In light of this limitation, alternative publications have been used to help define the exact of the grounds on a site specific basis where available.

2.3.3 Gaps in Current Knowledge

It is recognised that there are gaps in the understanding of the distribution, behaviour and ecology of certain species. This is particularly true for migratory species of conservation importance, such as Atlantic salmon (*Salmo salar*), sea trout (*Salmo trutta*), lamprey (*Lampetra fluviatilis*) sea lamprey, (*Petromyzon marinus*) and European eel (*Anguilla anguilla*). An absence of information in relation to specific migration routes, location of feeding grounds and the use of coastal/inshore areas by these species means that it is not possible to quantify the extent to which they may access areas occupied by the proposed modified TI.

2.4 Study Area

The study area used for this assessment has been defined by the ICES rectangles within which the modified TI is located (45E7 and 44E7) and is shown in Figure 2.1. Rivers designated as Special Areas of Conservation (SACs) in the Moray Firth and the wider area are also shown.

Figure 2.1 Modified Transmission Infrastructure study area

3 Baseline Characterisation

3.1 Substrate Types

In addition to factors such as water depth, temperature and salinity, substrate type can also determine the location and extent of feeding and spawning grounds for species such as *Nephrops (Nephrops norvegicus)*, king and queen scallops (*Pecten maximus, Aequipecten opercularis*), sandeels (Ammodytidae spp.) and herring (*Clupea harengus*).

The distribution of substrate types in the Moray Firth based on British Geological Survey (BGS) data is given in Figure 3.1. Muddy substrates dominate in the inner and southern area, whilst sand, gravelly sand and to a lesser extent sandy gravel and slightly gravelly sand, dominate in the northern and central areas.

The northern and southern sections of the modified TI are located in areas of coarser substrate, such as sandy gravel and gravelly sand, whilst the substrate in the middle section of the modified TI is characterised by the presence of muddy sand and sand.

Figure 3.1 BGS (British Geological Survey) seabed sediment chart with ground type

3.2 Species of Commercial Interest

The Moray Firth supports a number of commercially targeted fish and shellfish species. An indication of the relative importance of these within the modified TI study area is given in Figure 3.2, based on annual average (2003 to 2012) landings weights (tonnes) by species and ICES rectangle.

The principal shellfish and cephalopod species landed are *Nephrops*, scallops and squid. With respect to fish, haddock, herring, whiting, monkfish, mackerel and cod constitute the majority of landings. The relative importance of each of these species to the total landings weights varies depending on the ICES rectangle under consideration.

In the case of scallops, landings weights are particularly high in rectangle 45E7, representing almost 50% of the total. In rectangle 44E7 *Nephrops* and squid account for higher proportions of total average weights. In both rectangles constituting the modified TI study area, haddock represents a considerably higher proportion of total landings than all other fish species. Landings weights for monkfish, cod and herring are comparatively low. Elasmobranch species (sharks and rays) comprise a minimal percentage of the landings weights in the study area being included under the category "other" in Figure 3.2.

The annual average landings weights (2003 to 2012) by species and the proportion each contributes to the total are shown in Table 3.1 and Table 3.2 for shellfish and fish species respectively.

Figure 3.2 Live weight (tonnes) by species by ICES rectangle in the Study Area (2003-2012) (Source: MMO, 2013)

Common Name	Latin Name	Average (2003 - 2012) Landings Weight (t)	Percentage of Total Shellfish Landings Weight in 44E7 & 45E7	Percentage of Total Landings Weight (all fish and shellfish species combines) in 44E7 & 45E7
Nephrops	Nephrops norvegicus	756.7	40.4%	26.7%
King Scallops	Pecten maximus	678.2	36.2%	24.0%
Squid	Loligo forbesi	356.3	19.0%	12.6%
Edible Crab	Cancer pagurus	48.7	2.6%	1.7%
Velvet Crab	Necora puber	27.1	1.4%	1.0%
Lobsters	Homarus gammarus	3.8	0.2%	0.1%
Queen Scallops	Aequipecten opercularis	1.3	0.1%	< 0.1%
Octopus	n/a	1.1	0.1%	< 0.1%
Mixed Crabs	n/a	0.3	< 0.1%	< 0.1%
Whelks	Buccinum undatum	0.1	< 0.01%	< 0.01%
Green Crab	Carcinus maenas	0.1	< 0.01%	< 0.01%
Razor Clam	<i>Ensis</i> spp.	0.0	< 0.01%	< 0.01%
Periwinkles	Littorina littorea	0.0	< 0.01%	< 0.001%
Brown Shrimps	Crangon crangon	0.0	< 0.001%	< 0.0001%

Table 3.1 Annual average landings weights (2003 to 2012) of principal commercial shellfish species in the study are	ea
(Source: MMO, 2013)	

Table 3.2 Annual average landings weights (2003 to 2012) of principal commercial fish species in the study area (Source: MMO, 2013)

Common Name	Latin Name	Average (2003 - 2012) Landings Weight (t)	Percentage of Total Fish Landings Weight in 44E7 & 45E7	Percentage of Total Landings Weight (all fish and shellfish species combines) in 44E7 & 45E7
Haddock	Melanogrammus aeglefinus	592.2	61.9%	20.9%
Herring	Clupea harengus	117.1	12.2%	4.1%
Monks or Anglers	Lophius piscatorius / L. budegassa	74.8	7.8%	2.6%
Whiting	Merlangius merlangus	34.0	3.6%	1.2%
Mackerel	Scomber scombrus	29.2	3.1%	1.0%
Cod	Gadus morhua	28.8	3.0%	1.0%
Plaice	Pleuronectes platessa	26.6	2.8%	0.9%
Witch	Glyptocephalus cynoglossus	9.4	1.0%	0.3%
Skates and Rays	n/a	6.5	0.7%	0.2%
Lemon Sole	Microstomus kitt	6.3	0.7%	0.2%
Hake	Merluccius merluccius	5.3	0.6%	0.2%
Megrim	Lepidorhombus whiffiagonis	4.1	0.4%	0.1%
Ling	Molva molva	3.4	0.4%	0.1%
Saithe	Pollachius virens	2.6	0.3%	0.1%
Halibut	Hippoglossus hippoglossus	1.7	0.2%	0.1%
Other Species	n/a	14.3	1.5%	0.5%

3.3 Spawning and Nursery Grounds

The modified TI falls within, or is in close proximity to, the spawning and nursery grounds of a number of species (Coull *et al.*, 1998; Ellis *et al.*, 2010). These are listed in Table 3.3, together with the spawning times and intensity of spawning (where defined). The spawning times given in Table 3.3 are as provided in Coull *et al.* (1998) and the intensity of the spawning/nursery intensity as described in Ellis *et al.* (2010).

Sandeel, *Nephrops*, cod, plaice, lemon sole, sprat and whiting spawning grounds have all been defined within the vicinity of the three consented wind farms. The modified TI does not cross the spawning grounds of either the Orkney/Shetland or the Buchan herring stocks (the two stocks known to have spawning grounds in the vicinity of the Moray Firth; see Figure 3.6).

In addition to the species listed in Table 3.3, king scallop may also use areas in the vicinity of the modified TI as spawning and nursery grounds. Post-planktonic stages of this species are generally associated with coarse sand gravel substrates and bryozoans/hydroid communities. Similarly, squid are known to spawn in inshore areas from December to June, with peak spawning having been reported from December to March, laying eggs onto biogenic or manmade structures and surfaces. Fishermen have reported finding squid eggs off Burghead and Buckie in May and June in water depths of 5-6 m and eggs have also been found on lobster creels shot on hard ground in the Moray Firth. It is therefore considered that some degree of spawning may take place in the vicinity of the modified TI.

Species	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Nursery
Sandeel													
Nephrops				*	*	*							
Cod		*	*										
Plaice	*	*											
Lemon Sole													
Sprat					*	*							
Whiting													
Herring													
Spurdog		n/a											
Thornback Ray	n/a												
Spotted Ray	n/a												
Blue Whiting		n/a											
Ling		n/a											
Hake						n/	а						
Anglerfish						n/	а						
Mackerel						n/	а						
Haddock	n/a												
Saithe	n/a												
Colour key: (red) = h	nigh inte	ensity sp	bawning/	/nursery	y ground,	(yellov	v) = lov	v intensi	ty spaw	ning/nu	irsery gr	ound, (c	jreen) =
unknown spawning/nursery intensity, (*) = peak spawning													

 Table 3.3 Species with spawning and nursery areas within/in close proximity to the Modified TI, together with spawning times and intensity (Coull *et al.*, 1998; Ellis *et al.*, 2010).

A review of the species identified as having spawning and nursery grounds in the general area of the modified TI is given in the following sections.

3.3.1 Sandeels

For the purposes of fisheries management, the North Sea sandeel stock has been classified into seven reproductively isolated sub-stocks. The sandeel population of the Moray Firth is part of the Central Western North Sea sub-stock (ICES, 2009).

Sandeels have a prolonged dormant overwintering period (September to March) during which they are buried in benthic substrates (Winslade, 1974b; Wright & Bailey, 1993). This overwintering phase is interrupted by spawning which usually occurs during December and January (Winslade, 1974b; Gauld & Hutcheon, 1990; Bergstad *et al.*, 2001). Females lay demersal eggs which hatch as planktonic larvae several weeks after spawning during February and March (Macer, 1965; Langham, 1971; Wright & Bailey, 1996). Following spawning, overwintering resumes until April which marks the start of an extended period of pelagic feeding through spring and summer (Winslade, 1974b; Van der Kooij *et al.*, 2008).

Spawning grounds are shown in Figure 3.4 together with the results of recent egg and larval surveys, as presented in Ellis *et al.* (2010a). The modified TI is located in high intensity spawning grounds and a low intensity nursery ground for sandeels (Ellis *et al.*, 2010a).

Sandeels are highly substrate specific and as such broad scale patterns of distribution show a high degree of heterogeneity (Wright, 1999a). Sandeels create temporary burrows in the substrate and ventilate their gills with interstitial water. The presence of fine particles of silt rich sediments potentially clogs the gills and inhibits respiration. Therefore, preferred habitats typically comprise a high proportion of medium and coarse sands (particle size 0.25-< 2 mm) with low silt content (Holland *et al.*, 2005).

Based on the analysis of 2,885 grab-samples Holland *et al.* (2005) demonstrated that lesser sandeel is likely to be rare in sediments where the silt content (particle size < 0.63 μ m) is greater than 4 % and absent where the silt content is greater than 10% (Holland *et al.*, 2005; Wright *et al.*, 2000). Holland *et al.* (2005) further defined sediment characteristics for suitable and unsuitable habitats for sandeels. A habitat was defined as unsuitable for sandeels if all of the four sediment characteristics described below are present:

- >1% Medium silt AND
- ≤55% Medium sand AND
- >2% Coarse silt AND
- ≤15% Coarse sand

Suitable habitat was only broadly defined requiring one or more of the characteristics:

- >55% Medium sand OR
- >15% Coarse sand OR
- ≤2% Coarse silt OR

In light of the highly specific habitat requirements of sandeels it is expected that the distribution of adults, juveniles, larvae and spawning grounds will occupy discrete 'patches' as opposed to being distributed homogenously throughout the Moray Firth and the area occupied by the modified TI. The benthic particle size distribution (PSD) data indicates that stations KPA2, KPA50 and KPA58 contain substrates suitable for sandeels (Fugro, 2014; Figure 3.3).

Based on the BGS data presented in Figure 3.1 the areas of suitable sandeel habitat are the relatively small discrete areas of slightly gravelly sand and sand located in the north, central and southern areas of the modified TI.

Figure 3.3 Benthic Particle Size Distribution (PSD) sample stations (Fugro, 2014)

Figure 3.4 Sandeel spawning and nursery grounds (Modified from Ellis et al., 2010)

3.3.2 Nephrops

Nephrops are a burrowing species which spend a high proportion of their life cycle in burrows, leaving only when feeding and searching for a mate (Barreto & Bailey, 2013). In Scottish waters, spawning occurs from August to November (Howard 1989; Barreto & Bailey, 2013). Following fertilisation females incubate the eggs exogenously under the abdomen ('berried') for 8-9 months until they hatch as pelagic larvae from late April to August (Howard, 1989). Berried females remain in the burrow throughout the incubation period. Post hatch larval stages develop in the plankton before settling to the seabed six to eight weeks later as juveniles (Barreto & Bailey, 2013). The juveniles then enter burrows, remaining there for approximately one year (Howard, 1989).

Nephrops distribution is dependent upon the availability of substrates composed of fine cohesive mud within which they can construct burrows. Sediment type appears to affect the structure of *Nephrops* populations, with areas of fine sediment being characterised by the presence of large *Nephrops* and low population densities. Conversely, areas of coarser sediment may support higher population densities of smaller sized individuals (Howard, 1989). The benthic PSD data shows that "muddy sand" (BGS classification) was found at stations KPA12, KPA17 and KPB12, which are considered suitable sediments for *Nephrops* (Fugro, 2014; Figure 3.3).

Figure 3.5 shows that the location of the modified TI falls within the *Nephrops* spawning and nursery grounds defined by Coull *et al.* (1998). Based on the presence of significant fisheries in those ICES rectangles occupied by the modified TI, (particularly 44E7) and the presence of suitable habitats (muddy sand and sandy mud, see Figure 3.1) in central areas of its offshore route, it is likely that spawning and nursery grounds could occur in these locations.

Figure 3.5 Nephrops spawning and nursery grounds (Modified from Coull et al., 1998)

3.3.3 Herring

North Sea herring is divided into four sub-stocks on the basis of areas used for spawning. The spatial limits of these sub-stocks are shown in Figure 3.6. The sub-stocks most relevant to the modified TI are the Orkney-Shetland stock and the Buchan stock. The Orkney-Shetland stock spawns off the Scottish east coast and in Shetland/Orkney waters and the Buchan stock spawns outside the Moray Firth off Fraserburgh and south as far as the Firth of Forth.

Herring are demersal spawners and show a strong preference for coarse grounds and high energy environments when selecting spawning grounds (Maucorps, 1969; de Groot, 1980; Blaxter, 1985; Munro *et al.*, 1998; Barreto & Bailey, 2013). Females deposit sticky eggs in single batches directly onto the seabed in areas of coarse sand, gravel, small stones or rocks (Hodgson, 1957; Munro *et al.*, 1998; Barreto & Bailey, 2013).

Spawning of the Shetland-Orkney and Buchan sub-stocks occurs between August and September (Coull *et al.*, 1998; Barreto & Bailey, 2013) and shoals of herring arrive at traditional spawning grounds in a series of waves, where they congregate (Lambert, 1987). The composition of herring spawning schools changes over time as new fish arrive at spawning grounds and spent fish leave (Geffen, 2009).

It is generally thought that herring larvae hatch after approximately three weeks, depending on sea temperature (Maucorps, 1969; de Groot, 1980; Blaxter, 1985; Munro *et al.*, 1998; Barreto & Bailey, 2013). Morley & Batty (1996) found that herring larvae hatch between 6 and 10 days following fertilisation at water temperatures of 14.5°C. Hatched larvae measure between 7 and 10mm and depend on their yolk-sac until first feeding (Hodgson, 1957; ICES, 2013). Once this has been absorbed larvae become pelagic and feed on plankton. They are then passively carried by prevailing currents before arriving at nursery grounds (Munro *et al.*, 1998; Barreto & Bailey, 2013). After hatching, herring larvae can travel up to 100 km in the first 15 days (Dickey-Collas *et al.*, 2009).

Herring larvae from the Orkney-Shetland stock drift south into nursery grounds in the Moray Firth and east into nursery grounds in the Skagerrak and Kattegat. Larvae of the Buchan stock drift south into nursery grounds in the Firth of Forth and east to Skagerrak and Kattegat.

Herring spawning grounds as presented in Coull *et al.* (1998), including larval densities recorded in the 2008 International Herring Larvae Survey (IHLS) are given in Figure 3.6 (Ellis *et al.*, 2010). The extent of herring nursery grounds, together with juvenile catch rates recorded in groundfish surveys are also shown (Ellis *et al.*, 2010a). The modified TI does not pass through spawning grounds of either the Orkney-Shetland or Buchan herring stocks (Coull *et al.*, 1998) but is located within high intensity nursery grounds as defined by Ellis *et al.* (2010a). Maximum juvenile catch rates were highest west of the central section of the modified TI.

The definition of herring spawning grounds is principally based on the results of the IHLS, which has been undertaken since 1967. A time series of larval densities of the Orkney-Shetland stock (larvae from which are the most likely to drift south into areas occupied by the modified TI) based on data from the IHLS (MSS, 2011a) is provided in Figure 3.7 and Figure 3.8. These show newly hatched larvae (<10 mm) densities from 1973-1994 (1-15 September) and from 1973 to 2004 (16-30 September), respectively. The distribution of larval densities in recent years (2005, 2006, 2008, and 2009) is illustrated in Figure 3.9, as provided in Rohlf & Gröger (2006, 2009, and 2010) and Schmidt *et al.* (2007, 2008).

Based on the data shown it appears that the highest larval densities occur in the north of the Moray Firth, off the coast of Caithness as opposed to central and southern areas relevant to the modified TI. It should be noted that not all stations are sampled each year during the IHLS survey, therefore the lack of larvae in some locations for a particular year does not necessarily imply that spawning did not occur. However, given the long time series for which data is shown it is expected to be broadly representative of the distribution and density of herring larvae within the Moray Firth.

Based on the BGS data presented previously in Figure 3.1, areas of suitable spawning habitat constitute a small proportion of the area covered by the modified TI and are located within the northern and southern sections.

Figure 3.6 Herring spawning and nursery grounds (Modified from Ellis et al., 2010)

Figure 3.7 International Herring Larvae Surveys charts (1973-1994) of the Orkney/Shetland stock for the period 1 (1-15 September) (Source: Data MSS, 2011a)

Moray Offshore Renewables Limited Modified Transmission Infrastructure for Telford, Stevenson and MacColl Wind Farms

Figure 3.8 International Herring Larvae Surveys charts (1973-2004) of the Orkney/Shetland stock for the period 2 (16-30 September) (Source: Data MSS, 2011)

Technical Appendix 4.2 A

Figure 3.9 International Herring Larval Surveys charts (2005, 2006, 2008, 2009) of the Orkney/Shetland stock (Rohlf & Gröger, 2006, 2009, 2010; Schmidt et al., 2007, 2008)

3.3.4 Cod

The cod population of the Moray Firth is genetically distinct from other North Sea populations (Hutchinson *et al.*, 2001). Spawning occurs between January and April, generally during hours of darkness and is at its highest intensity from February to March (ICES, 2005a; Coull *et al.*, 1998). Spawning occurs within the water column and eggs remain pelagic hatching over a period of two to three weeks, dependant on water temperature (Wright *et al.*, 2003). Male cod are known to produce a drumming sound during the spawning season (Nordeide & Kjellsby, 1999; Fudge and Rose, 2009) and it has been suggested that the sounds are used to defend territories and attract females during spawning (Brawn, 1961).

Figure 3.10 shows the extent of cod spawning and nursery grounds. Figure 3.10 also depicts egg and larval densities and juvenile catch rates recorded in ground fish surveys (Ellis *et al.*, 2010a). As shown, the proposed location of the modified TI falls within a low intensity cod spawning area.

The Moray Firth has been defined as a high intensity nursery ground for cod. During the North Sea Egg Survey (2004), significant numbers of eggs were found off the Moray Firth and to the east of the Shetland Islands (Fox *et al.*, 2008). It has been suggested that passive transport of early life history stages could lead to a substantial advection of cod eggs and larvae from Shetland south to the Scottish east coast (Heath & Gallego, 1997).

Potentially significant impacts on spawning cod were identified as a result of piling noise associated with the installation of the wid farms sites in the EIA submitted as part of the Environmental Statement (ES) detailing the Telford, Stevenson and MacColl Offshore Wind Farms in August 2012 (Chapter 7.2 - Biological Environment). The impact assessment took a precautionary approach, where conservative assumptions were applied due to the uncertainty regarding how cod may utilise the Moray Firth area. In consultation with MSS, MORL committed to undertake additional survey work and monitoring with the objective of increasing the confidence in the impact assessment and identifying whether further mitigation would be required.

Results of the survey are shown in Figure 3.11 and Figure 3.12. Cod were recorded in low numbers at 35 out of 58 stations with a maximum of 9 individuals caught at a single station (0T38, Trip B). A total of 23 spawning cod were caught throughout the survey, 12 in Trip A and 11 in Trip B. Further detail is provided in Appendix 1 (Cod Survey Report).

Figure 3.10 Cod spawning and nursery grounds (Modified from Ellis et al., 2010)

Figure 3.11 Cod survey (trip A) cod spawning state

Figure 3.12 Cod survey (trip B) cod spawning state

3.3.5 Plaice

Figure 3.13 shows the distribution of plaice spawning grounds as defined by Coull *et al.* (1998). Figure 3.12 also provides larvae and egg densities as provided in Ellis *et al.* (2010a). A small area to the northwest and an area to the south of the plaice spawning grounds defined by Coull *et al.* (1998) are crossed by the modified TI. The area occupied by the modified TI has also been identified as a low intensity nursery ground.

Plaice spawn between December and March with a peak usually occurring in February/March (Harding *et al.*, 1978; Simpson, 1959; Rijnsdorp, 1989;;). Plaice are pelagic spawners and rarely spawn beyond the 50 m depth contour (Harding *et al.*, 1978; Rijnsdorp, 1989; Armstrong *et al.*, 2001; Murua & Saborido-Rey, 2003). Females spawn over a period of 4-6 weeks (Rijnsdorp, 1989). Eggs hatch into pelagic larvae between 7 and 21 days dependant on water temperature (Fox *et al.*, 2003).

The results of the North Sea Egg Survey (2004) showed that plaice eggs showed a patchy distribution with higher abundances in the areas of Flamborough Head, the Firth of Forth, the Moray Firth and to the east of the Shetland Isles (ICES, 2005b). Assuming spawning is relatively continuous, the centres of density of stage I eggs should be close to the sites of spawning although up to three days drift and dispersion may have occurred (ICES, 2005b).

Figure 3.13 Plaice spawning and nursery grounds (Modified from Ellis *et al.*, 2010)

3.3.6 Lemon sole

Figure 3.14 shows that the modified TI is situated within lemon sole spawning grounds defined by Coull *et al.* (1998). Lemon sole is widely distributed throughout the North Sea and is thought to

spawn where it is found (Rogers & Stocks, 2001). Spawning occurs from April until September (Coull *et al.*, 1998). Figure 3.14 shows that nursery grounds have been identified within the vicinity of the modified TI (Coull *et al.*, 1998).

Figure 3.14 Lemon sole spawning and nursery grounds (Modified from Coull *et al.*, 1998)

3.3.7 Sprat

Figure 3.15 shows that the modified TI falls within sprat spawning and nursery grounds defined by Coull *et al.* (1998). As shown, the spawning grounds of this species are widely distributed around the British Isles. Spawning takes place from May to August (Coull *et al.*, 1998), peaking in May to early July (Kraus & Köster, 2001). Spawning occurs in both coastal and offshore waters up to 100 km from the shore (Whitehead, 1986; Nissling *et al.*, 2003; FAO, 2011). Females spawn repeatedly in batches throughout the spawning season (Milligan, 1986). Eggs and larvae of sprat are pelagic and subject to larval drift, often moving into coastal nursery areas (Nissling *et al.*, 2003; Hinrichsen *et al.*, 2005). Feeding larvae are mainly found in the upper layers of the water column (Nissling *et al.*, 2003).

Figure 3.15 Sprat spawning and nursery grounds (Modified from Coull et al., 1998)

3.3.8 Haddock

Figure 3.16 shows that the modified TI does not overlap with haddock spawning grounds as defined by Coull *et al.* (1998) although a more recent publication (Barreto & Bailey, 2013) shows that spawning occurs in an additional location to the east of the Moray Firth. However, these grounds are located some distance away from the location of the modified TI. The modified TI does however fall within the haddock nursery grounds as defined by Coull *et al.* (1998).

Results of international ichthyoplankton surveys carried out in 2004 found high concentrations of haddock stage I eggs in and off the Moray Firth (ICES, 2005b) and surveys conducted by the Fisheries Research Services (FRS) in 1999 found haddock spawning in both coastal and offshore areas (Gibb *et al.*, 2004). The highest densities of mature and spawning haddock were found in depths of around 100 m and most fish were associated with areas of mud or sand with abundance apparently reduced over areas of harder substrate (Gibb *et al.*, 2004).

Haddock spawn between February and May (Coull *et al.*, 1998), at depths of 50-150-m (Fillina *et al.*, 2009; FAO, 2011), with the peak spawning occurring in March and April (Coull *et al.*, 1998; Fillina *et al.*, 2009). Haddock are serial spawners, releasing their eggs in batches over the spawning season (Gibb *et al.*, 2004; Fillina *et al.*, 2009). Haddock eggs are laid demersally and rise into the water column following fertilisation and develop into pelagic larvae (Page & Frank, 1989). Haddock are capable of producing a wide range of sounds (Wahlberg & Westerberg, 2005) and those produced by males during the spawning season are thought to serve to bring male and female fish together. In addition, it has been suggested that the sounds play a role in synchronising the reproductive behaviour of males and females (Hawkins & Amorim, 2000).

Figure 3.16 Haddock spawning and nursery grounds (Modified from Coull et al., 1998)

3.3.9 Whiting

Figure 3.17 shows that the modified TI occupies a small area of the whiting spawning grounds defined by Coull *et al.* (1998) along their western extent. The modified TI is defined as a low intensity spawning ground and high intensity nursery ground by Ellis *et al.* (2010a).

Whiting spawn between February and June with females releasing their eggs in numerous batches for up to fourteen weeks (Teal *et al.*, 2009). Eggs are pelagic and take approximately ten days to hatch (Russel, 1976).

Figure 3.17 Whiting spawning and nursery grounds (Modified from Ellis et al., 2010)

3.3.10 Other Species with Nursery Grounds

Nursery grounds have been defined in the vicinty of the modified TI for a number of other species in addition to those described in the sections above (See Table 3.3). These are shown in Figure 3.18 and Figure 3.19 as defined by Coull *et al.* (1998) and Ellis *et al.* (2010a). Nursery grounds have not been identified in the vicinity of the modified TI for tope or ling (Figure 3.18 and Figure 3.19).

Figure 3.18 Nursery grounds of anglerfish, blue whiting, hake, saithe, mackerel and ling (Modified from Ellis *et al.*, 2010 and Coull *et al.*, 1998)

Figure 3.19 Nursery grounds of thornback ray, spurdog, spotted ray and tope (Modified from Ellis *et al.*, 2010 and Coull *et al.*, 1998)

3.4 Key Species in the Food-web

Abundant species with high biomass such as sandeels and clupeids (e.g. herring and sprat) play an important functional role in North Sea food web dynamics. These species occupy intermediate trophic levels, are significant predators of zooplankton and represent a key dietary component for a variety of aquatic predators.

Species of sandeels and Clupeidae are important prey for piscivorous fish such as elasmobranchs, gadoids, bass, mackerel, and diadromous salmonids, amongst others (ICES, 2005a; ICES, 2005b; ICES, 2006; ICES, 2008; ICES, 2009). Studies conducted by Greenstreet *et al.* (1998) in the inner Moray Firth showed that sandeels comprised the majority of the diet for whiting and haddock (all size classes) in June, whilst from October to January, the proportion of sandeels in the diet of whiting and haddock was gradually replaced by sprat.

In addition, the demersal egg mats of herring are known to aggregate fish predators (Richardson *et al.*, 2011). The diets of marine mammals such as seals, harbour porpoise and Minke whales are also subsidised by sandeels and clupeids (Olsen & Holst, 2001; Santos and Pierce, 2003; Pierce *et al.*, 2004). Sandeels and clupeids are also an important resource for seabirds (Wanless *et al.*, 2005).

3.5 Species of Conservation Importance

A number of species of conservation importance have been identified as potentially present in the Moray Firth and the wider area. These include diadromous migratory species, elasmobranchs and a number of fish species which are targeted commercially.

Diadromous migratory species potentially present in the vicinity of the modified TI and their conservation status are given in Table 3.4. Species include European eel, allis and twaite shad, sea and river lamprey, smelt, salmon and sea trout.

Elasmobranchs have slow growth rates and low reproductive output compared to other species groups (Camhi *et al.*, 1998). As a result, stock resilience to fishing mortality is low (Smith *et al.*, 1998) and recovery rates are likely to be slow where directed fisheries have depleted abundance (Holden, 1974; Bonfil, 1994; Musick, 2005). A summary of the principal species with conservation status and /or declining stocks potentially present in the vicinity of the modified TI is provided in Table 3.5.

In addition to the above, a number of other fish species with conservation status may be present in the area of the modified TI. The majority of these are commercially exploited in the Moray Firth having been recorded in landings data within the study area and are given in Table 3.6.

		Conservation Status								
Common Name	Scientific Name	OSPAR	IUCN Red List	Bern Convention	Habitats Directive	The Wildlife & Countryside Act 1981	The Conservation (Natural Habitats, &c.) Regulations 1994	UK BAP species	Scottish Priority Marine Feature (PMF)	The Nature Conservation (Scotland) Act 2004
European eel	Anguilla anguilla	~	Critically endangered	-	-	-	-	~	~	-
Allis shad	Alosa alosa	~	Least concern	\checkmark	~	~	\checkmark	\checkmark	-	-
Twaite shad	Alosa fallax	-	Least concern	\checkmark	~	~	~	~	-	-
Sea Lamprey	Petromyzon marinus	~	Least concern	~	~	-	-	~	~	-
River Lamprey	Lampetra fluviatilis	-	Least concern	~	~	-	~	~	~	-
Smelt	Osmerus eperlanus	-	Least concern	-	-	-	-	~	√*	-
Salmon	Salmo salar	~	Lower Risk/least concern	~	~	-	~	~	~	-
Sea Trout	Salmo trutta	-	Least concern	-	-	-	-	~	~	-

Table 3.4 Diadromous species of conservation importance in the Moray Firth

						illis			Co	nservation Sta	atus		
Common Name	Latin Name	MMO Landings Data	Recorded in the Moray Firth (E et al., 2005)	OSPAR	IUCN Red List	The Wildlife & Countryside Act 1981	The Conservation (Natural Habitats, &c.) Regulations 1994	UK BAP species	Scottish Priority Marine Feature (PMF)	The Nature Conservation (Scotland) Act 2004			
Sharks													
Basking shark	Cetorhinus maximus	-	-	~	Vulnerable	\checkmark	-	~	\checkmark	\checkmark			
Blue shark	Prionace glauca	-	-	-	Near threatened	-	-	~	-	-			
Leafscale gulper shark	Centrophorus squamosus	~	-	~	Vulnerable	-	-	~	-	-			
Porbeagle	Lamna nasus	-	-	√	Vulnerable	-	-	✓	-	-			
Portuguese dogfish	Centroscymnu s coelolepis	\checkmark	-	~	Near threatened	-	-	~	-	-			
Spurdog	Squalus acanthias	~	\checkmark	~	Vulnerable	-	-	~	\checkmark	-			
Skates and Rays	S												
Sandy ray	Leucoraja circularis	-	-	-	Vulnerable	-	-	~	-	-			
Spotted ray	Raja montagui	-	\checkmark	~	Least concern	-	-	-	-	-			
Thornback ray	Raja clavata	\checkmark	\checkmark	~	Near Threatened	-	-	-	-	-			

Table 3.5 Principa	al elasmobranch s	pecies with conservation	on status recorded in the M	oray Firth
--------------------	-------------------	--------------------------	-----------------------------	------------

Table 3.6 Conservation status of fish species recorded in landings data (2000 to 2009) of the study area

Common Name	Latin name	Scottish Priority Marine Feature	UK BAP Species	OSPAR	IUCN Red List
Anglerfish	Lophius piscatorius	✓ (juveniles)	✓	-	-
Atlantic halibut	Hippoglossus hippoglossus	-	√	-	Endangered
Atlantic mackerel	Scomber scombrus	✓	✓	-	-
Black scabbardfish	Aphanopus carbo	-	✓	-	-
Blue ling	Molva dypterygia	-	√	-	-
Cod	Gadus morhua	✓	✓	✓	Vulnerable
Greenland halibut	Reinhardtius hippoglossoides	-	~	-	-
Hake	Merluccius merluccius	-	✓	-	-
Herring	Clupea harengus	 ✓ (juveniles and spawning adults) 	~	-	Least concern
Horse mackerel	Trachurus trachurus	-	✓	-	-
Ling	Molva molva	✓	✓	-	-
Plaice	Peluronectes platessa	-	✓	-	Least concern
Roundnose Grenadier	Coryphaenoides rupestris	-	√	-	-
Saithe	Pollachius virens	✓ (juveniles)	-	-	-
Sandaala	Ammodytes marinus	✓	✓	-	-
Salineers	Ammodytes tobianus	✓	-	-	-
Whiting	Merlangius merlangus	 ✓ (juveniles) 	✓	-	-

4 References

Armstrong, M. J., Connolly, P., Nash, R. D. M., Pawson, M. G., Alesworth, E., Coulahan, P. J., Dickey-Collas, M., Milligan, S. P., O'Neill, M. F., Witthames, P. R., and Woolner, L., (2001) An application of the annual egg production method to estimate the spawning biomass of cod (Gadus morhua L.), plaice (Pleuronectes platessa L.) and sole (Solea solea L.) in the Irish Sea. ICES Journal of Marine Science, 58: 183–203.

Barreto, E and Bailey, N (2013) Fish and Shellfish stocks 2013 edition. Marine Scotland, the Scottish Government. ISSN 2044 0340

Bellido, J. M., Pierce, G. J., Wang, J., (2001) Modelling intra-annual variation in abundance of squid Loligo forbesi in Scottish waters using generalized additive models. Fisheries Research 52, 23–39.

Bergstad, O. A., Hoines, A. S., and Kruger-Johnsen, E. M., (2001) Spawning time, age and size at maturity, and fecundity of sandeel, Ammodytes marinus, in the north-eastern North Sea and in unfished coastal waters off Norway. Aquatic Living Resources, 14: 293e301.

Bern Convention, (2011) Available online at http://conventions.coe.int/Treaty/FR/Treaties/Html/104-2.htm#Fish/Poissons. Accessed on 25/05/2014.

BGS, (2011) Available online at http://www.bgs.ac.uk/products/digitalmaps/seabed.html. Accessed on 27/05/2014.

Blaxter, J.H.S., (1985) The herring: A successful species? Can.J.Fish.Aquat.Sci.42 (Suppl.1):21-30.

Bonfil, R., (1994) "Overview of world elasmobranch fisheries." FAO Fisheries Technical Paper No 341: 119pp.

Brand, A. R., (2006) Scallop ecology: distribution and behaviour In: "Scallops: biology ecology and aquaculture". S.E. Shumway and G. J. Parsons (eds), Elsevier Press, 651-744. Accessible at http://books.google.co.uk. Accessed on 14/03/2011.

Brawn, V. M., (1961) Sound production by the cod (Gadus callarias L.). Behaviour, 18: 239–245. Cited in Nordeile & Kjellsby 1999.

Brawn, V. M. (1961). Sound production by the cod (Gadus callarias L.). Behaviour: 239-255.

Bult, T. P., and Dekker, W., (2007) Experimental field study on the migratory behaviour of glass eels (Anguilla anguilla) at the interface of fresh and salt water. – ICES Journal of Marine Science, 64: 1396–1401.

Camhi, M., Fowler, S., Musick, J., Brautigam A. And Fordham S., (1998) Sharks and their relatives: Ecology and Conservation. Occasional Paper of the IUCN Species Survival Commission Occas. Pap. No. 20.

CEFAS, (2004) Offshore Wind Farms: Guidance Note for Environmental Impact Assessment in Respect of FEPA and CPA Requirements.

Cefas, DEFRA, DTI, and MCEU (2004) Offshore wind farms: Guidance note for environmental impact assessment in respect of FEPA and CPA requirements Version 2, Marine Consents Environment Unit. Available online at: http://www.cefas.co.uk/publications/files/windfarm-guidance.pdf Accessed 11.06.2014

CEFAS, (2011) ANGLERFISH in the South West of the British Isles (ICES Division VIIb-k and VIIIa,b)

Coull, K.A., Johnstone, R., and Rogers, S.I., (1998) Fisheries Sensitivity Maps in British Waters. UKOOA Ltd.

Cushing, D.H. and Bridger, J.P., (1966) The stock of herring in the North Sea and changes due to fishing. Fishery Invest. Lond. (2) 25 (1), i-vii, 1-123.

Daverat, F., Limburg, K.E., Thibault, I., Shiao, J.-C., Dodson, J.J., Caron, F., Tzeng, W.-N., Iizuka, Y. & Wickström, H., (2006) Phenotypic plasticity of habitat use by three temperate eel species, Anguilla anguilla, A. japonica and A. rostrata. Marine Ecology Progress Series, 308, 231-241. Cited in Malcolm *et al* 2010.

de Groot, S. J., (1980) The consequences of marine gravel extraction on the spawning of herring, Clupea harengus Linné. Journal of Fish Biology, 16: 605 – 611.

Deelder, C. L., (1958) On the behaviour of elvers (Anguilla vulgaris Turt.) migrating from the sea into fresh water. Journal du Conseil Permanent International pour l'Exploration de la Mer, 24: 135–146. Cited in Bult & Dekker 2007.

Dickey-Collas, M., Clarke, M., and Slotte, A. (2009.). ""Linking Herring": do we really understand plasticity? – ICES Journal of Marine Science, 66: 1649–1651.

Dulvy, N.K., Notobartolo di Sciara, G., Serena, F., Tinti, F., Ungaro, N., Mancusi, C. & Ellis, J., (2006) Dipturus batis. In: IUCN 2007. IUCN Red List of Threatened Species.

EC 92/43/EEC. Available online at http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31992L0043:EN:HTML. Accessed on 25/04/2011.

Ellis, J.R., Cruz-Martínez, A., Rackham, B.D., and Rogers, S.I., (2005) The Distribution of Chondrichthyan Fishes Around the British Isles and Implications for Conservation. J. Northw. Atl. Fish. Sci., 35: 195-213. doi:10.2960/J.v35.m485

Ellis, J.R., Milligan, S., Readdy, L., South, A., Taylor, N., and Brown, M., (2010a) Mapping spawning and nursery areas of species to be considered in Marine Protected Areas (Marine Conservation Zones).

Ellis, J.R., Doran, S., Dunlin, G., Hetherington, S., Keable, J. and Skea, N., (2010b) Programme 9: Spurdog in the Irish Sea. Final Report.

Enger, P.S., (1967) Hearing in herring. Comp. Biochem. Physiol. 22, 527-538. Cited in de Groot (1980).

FAO, (2011) Available online http://www.fao.org. Accessed on 15/04/2011.

Filina, E.A., Khlivnoy, V.N., and Vinnichenko, V.I., (2009) The reproductive biology of haddock (Mellanogrammus aeglefinus) at the Rockall Bank. J. Northw. Atl. Fish. Sci., 40: 59–73.

Fox, C. J., Geffen, A. J., Blyth R., and Nash, R. D. M., (2003) Temperature-dependent development rates of plaice (Pleuronectes platessa L.) eggs from the Irish Sea. JOURNAL OF PLANKTON RESEARCH. VOLUME 25/ NUMBER 11/PAGES 1319–1329.

Fox, C.J., Taylor, M., Dickey-Collas, M., Fossum, P., Kraus, G., Rohlf, N., Munk, P., van Damme, C.J., Bolle, L.J., Maxwell, D.L. and Wright, P.J., (2008) Mapping the spawning grounds of North Sea cod (Gadus morhua) by direct and indirect means. Proc Biol Sci. 2008 Jul 7; 275(1642):1543-8.

Fudge, S. B., and Rose, G. A., (2009) Passive- and active-acoustic properties of a spawning Atlantic cod (Gadus morhua) aggregation. – ICES Journal of Marine Science, 66: 1259–1263.

FUGRO EMU 2014 Results of benthic survey

Furness, R. W., (1999) Towards defining a sandeel biomass limit for successful breeding by seabirds. In Wright, P.J. and Kennedy, F.M., (1999) Proceedings of a workshop held at FRS Marine Laboratory Aberedeen 22-24 February 1999. Fisheries Research Services Report No 12/99.

Furness, R.W., (2002) Management implications of interactions between fisheries and sandeel-dependent seabirds and seals in the North Sea.-ICES Journal of Marine Science, 59:261-269.

Gauld, J.A., and Hutcheon, J.R., (1990) Spawning and fecundity in the lesser sandeel, *Ammodytes marinus Raitt*, in the northwestern North Sea. Journal of Fish Biology, 36: 611e613.

Geffen, A. J. (2009). "Advances in herring biology: from simple to complex, coping with plasticity and adaptability." ICES Journal of Marine Science: Journal du Conseil 66(8): 1688-1695.

Gibb, F.M, Wright, P.J., Gibb, I.M. and O'Sullivar, M., (2004) Haddock and whiting spawning areas in the North Sea and Scottish West coast. Fisheries Research Services Internal Report No 11/04.

Gibb, F.M, Gibb, I.M and Wright, P.J., (2007) Isolation of Atlantic cod (Gadus morhua) nursery areas. Marine Biology: 1185-1194. Cited in Gibb *et al* (2008).

Gibb, I.M., Wright, P.J., and Campbell, R., (2008) Identifying Critical Spawning and Nursery Areas for North Sea Cod; Improving The Basis for Cod Management. Scottish Industry/Science Partnership (SISP) Report No 03/08.

Greenstreet, S.P.R., Holland, G.J., Guirey, E.J., Armstrong, E., Fraser, H. M., and Gibb, I. M., (2010). "Combining hydroacoustics seabed survey and grab sampling techniques to assess "local" sandeel population abundance. ICES Journal of Marine Science, vol. 67, pp.971-984.

Greenstreet, S.P.R., Holland, G.J., Guirey, E.J., Armstrong, E., Fraser, H. M., and Gibb, I. M., (2010) Combining hydroacoustic seabed survey and grab sampling techniques to assess "local" sandeel population abundance. – ICES Journal of Marine Science, 67: 971–984.

Harding, D., Nichols, J.H., and Tungarte, D.S., (1978) The spawning of plaice (Pleuronectes platessa L.) in the southern North Sea and North Sea plaice SSB using the annual egg production method 2009 Conseil International pour l'Exploration de la Mer, 172: 102–113. Cited in van Damme *et al* 2009.

Hastie, L., Hudson, A., Laughton, R. and Shearer, W., (2008) The status of the European eel (Anguilla anguilla) inwatercourses of the Cairngorms National Park. A report prepared on behalf of Spey Research Trust for Cairngorms National Park Authority (CNPA).

Haugland, M., Holst J.C., Holm, M. and Hansen, L.P., (2006) Feeding of Atlantic salmon (Salmo salar L.) postsmolts in the Northeast Atlantic. ICES J. Mar.Sci. 63(8):1488-1500.

Hawkins, A. D., and Amorim, M.C.P., (2000) Spawning sounds of the male haddock, Melanogrammus aeglefinus. Environmental biology of fishes. Volume 1 / 1976 - Volume 91 / 2011.

Heath, M., Leaver, M., Matthews, A., and Nicoll, N., (1989) Dispersion and feeding of larval herring (Clupea harengus L.) in the Moray Firth during September 1985. Estuar. Coast. Shelf Sci. Vol. 28. 549-566.

Hedger, R., McKenzie, E., Heath, M., Wright, P., Scott, B., Gallego, A., and Andrews, J., (2004) Analysis of the spatial distributions of mature cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) abundance in the North Sea (1980-1999) using generalised additive models. Fisheries Research 70(1): 17-25.

Hinrichsen, H.H., Kraus, G., Voss, R., Stepputtis, D., and Baumann, H., (2005) The general distribution pattern and mixing probability of Baltic sprat juvenile populations. Journal of Marine Systems, 58: 52 – 66.

Hodgson, W.C., (1957) The herring and its fishery. London, Routledge and Kegan Paul.

Ter Hofstede, R.H., Winter, H.V. and Bos, O.G., (2008) Distribution of fish species for the generic Appropriate Assessment for the construction of offshore wind farms. IMARES Report C050/08.

Holden, M.J., (1974). Problems in the rational exploitation of elasmobranch populations and some suggested solutions. Sea Fisheries Research (F. R. Harden Jones, ed). Elek: London 117-137.

Holland, G.J., Greenstreet, S.P.R., Gibb, I.M., Fraser, H.M., Robertson, M.R., (2005) Identifying sandeel Ammodytes marinus sediment habitat preferences in the marine environment. Mar. Ecol. Prog. Ser. 303, 269–282.

Howard, A. E. and Nunny, R. S., (1983) Effects of near-bed current speeds on the distribution and behaviour of the lobster, Homarus gammarus (L.). J. Cons. Int. Explor. Mer. 71, 27 - 42.

Howard, F.G., (1989) The Norway Lobster. Scottish Fisheries Information Pamphlet Number 7 1989 (Second Edition) ISSN 03099105.

Hutchinson, W.F., Carvalho, G.R. and Rogers, I., (2001) Marked genetic structuring in localised spawning populations of cod Gadus morhua in the North Sea and adjoining waters, as revealed by microsatellites. Mar Ecol Prog Ser. Vol. 223: 251–260, 2001.

ICES, (2005a) Spawning and life history information for North Atlantic cod stocks. ICES Cooperative Research Report, No. 274. 152 pp.

ICES, (2005b) Report of the Planning Group on North Sea Cod and Plaice Egg Surveys in the North Sea (PGEGGS), 10–12 May 2005, Lowestoft, UK. ICES CM 2005/G:11. 85 pp.

ICES, (2006) Report of the Study Group on Multispecies Assessments in the North Sea (SGMSNS), 20–25 February 2006, ICES Copenhagen. ICES CM 2006/RMC:02. 75 pp. For permission to reproduce material from this publication, please apply to the General Secretary.

ICES, (2006b). Report of the Working Group on Ecosystem Effects of Fishing Activities (WGECO), 5 12 April 2006, ICES Headquarters, Copenhagen. ACE:05. 174 pp.

ICES, (2007) Report of the Working Group Elasmobranch Fishes (WGEF), 22–28 June 2007, Galway, Ireland. ICES CM 2007/ACFM:27. 318 pp.

ICES, (2008a) Report of the Working Group on Multispecies Assessment Methods (WGSAM), 6–10 October 2008, ICES Headquarters, Copenhagen. ICES CM 2008/RMC:06. 113 pp.

ICES, (2009) Report of the ICES Advisory Committee 2009. ICES Advice, 2009. Book 6, 236 pp.

ICES (2013). Report of the Herring Assessment Group for the Area South of 62oN, 12-21 March 2013. ICES CM.2013/ACOM:06.

Jensen, H., Wright, P. J., and Munk, P., (2003) Vertical distribution of pre-settled sandeel (Ammodytes marinus) in the North Sea in relation to size and environmental variables. E ICES Journal of Marine Science, 60: 1342e1351.

Keltz, S., Bailey N., (2010) Fish and Shellfish stocks 2010. Marine Scotland, the Scottish Government. ISSN 2044-0359.

Kinnear, J.A.M. and Mason, J., (1987) A preliminary study of an unfished population of the velvet swimming crab Liocarcinus puber (L.). International Council for the Exploration of the Sea (CM Papers and Reports), (Shellfish and Benthos Committee), CM 1987/K:6, 10pp (Cited in in Jessop *et al* 2007).

Kraus, G. and Köster, F. W., (2001) Duration, frequency and timing of sprat spawning in the Central Baltic: An analysis based on gonadal maturity. ICES CM 2001/J:25.

Lambert, T.C., (1987) Duration and intensity of spawning in herring Clupea harengus as related to the age structure of the mature population. Mar. Ecol. Prog. Ser. Vol. 39: 209-220. 1.

Langham, N. P. E., (1971) The distribution and abundance of larval sand-eels (Ammodytidae) in Scottish waters. Journal of the Marine Biological Association of the United Kingdom, 51: 697e707. Cited in Jensen *et al* 2003.

Macer, C.T., (1965) The distribution of larval sand eels (Ammodytidae) in the southern North Sea. Journal of the Marine Biological Association of the United Kingdom, 45: 187e207. Cited in Jensen *et al* 2003.

Marine Scotland (2010) Strategic Environmental Assessment (SEA) of Draft Plan for Offshore Wind Energy in Scottish Territorial Waters: Volume 1: Environmental Report. May 19, 2010. Available online at: http://www.scotland.gov.uk/Publications/2010/05/14155353/0 Accessed 11.06.2014

Marine Scotland (2011) Habitats Regulations Appraisal of Draft Plan for Offshore Wind Energy in Scottish Territorial Waters: Appropriate Assessment Information Review. Report by ABP Marine Environmental Research Ltd. For Scottish Government. Jan 2011. Available online at: http://www.scotland.gov.uk/Resource/Doc/343883/0114426.pdf Accessed 11.06.2014

Maucorps, A., (1969) Biologie et peche du hareng en Mer du Nord, son exploitation rationelle. Science et Pêche, Bull. Insf. Pêches marif., no 186, novembre 1969.

McConnell B., Hall A. and Fedal M., (1999) Seal Foraging and Sandeel Distribution. In Wright, P.J. and Kennedy, F.M., (1999) Proceedings of a workshop held at FRS Marine Laboratory Aberdeen 22-24 February 1999. Fisheries Research Services Report No 12/99.

Mill, A., Dobby, H., McLay, A. and Mesquita, C., (2009) Crab and lobster fisheries in Scotland: an overview and results of stock assessments, 2002-2005. Marine Scotland Science Internal Report 16/09.

Milligan, S. P., (1986) Recent studies on the spawning of sprat (Sprattus sprattus L.) in the English Channel. Fisheries Research Technical Report no. 83.

Mills, D.H., Hadoke, G.D.F., Shelton R.G.J and Read, J.B.D., (2003) Atlantic Salmon Facts. Atlantic Salmon Trust Booklet. Prepared in 1986. Revised in 2003.

MMO, (2013) Marine Management Organisation.

Morley and Batty (1996) The effects of egg size and incubation temperature on the hatching and early growth of larval herring. IN: The Fish Egg: Its biology and culture. Symposium Proceedings, Eds. MacKinlay D and Eldrige M International Congress on the biology of fishes San Francisco State University July 14-18 1996.

Munro, J., Gauthier, D. and Gagné, J. A., (1998) Description d'une frayère de hareng (Clupea harengus L.) à l'île aux Lièvres dans l'estuaire moyen du Saint-Laurent. Rapp. tech. can. sci. I halieut. aquat. 2239 : vi + 34 p.

Murua H. nd Saborido-Rey F., (2003) Female Reproductive Strategies of Marine Fish Species of the North Atlantic.

Musick, J.A., (2005) Management Techniques for elasmobranch fisheries. FAO Fisheries Technical paper 474.

MSS. 2010a. Sea trout. Marine Scotland Science online publications. Available online at: http://www.scotland.gov.uk/Topics/marine/marine-environment/species/fish/freshwater/seatrout. Accessed: 05/12/2010. MSS, (2011) Scotland's Marine Atlas-Information for type National marine Plan. Available online at http://www.scotland.gov.uk/Topics/marine/science/assessment/atlas. Accessed on 26/04/2011.

MSS (2011a) Marine Scotland Science. Emma Hatfield personal communication.

Nissling, A., Muller, A., Hinrichsen, H.H., (2003) Specific gravity and vertical distribution of sprat (Sprattus sprattus) eggs in the Baltic Sea. Fish Biol. 63, 280–299.

Nordeide, J. T. and Kjellsby, E., (1999) Sound from spawning cod at their spawning grounds. – ICES Journal of Marine Science, 56: 326–332.

Olsen, E. and Holst, J.C., (2001) A note on common minke whale (Balaenoptera acutorostrata) diets in the Norwegian Sea and the North Sea. J. CETACEAN RES. MANAGE. 3(2):179–183, 2001.

OSPAR, (2011) OSPAR's List of Threatened and/or Declining Species and Habitats. Available online at http://www.snh.gov.uk/docs/B469310.pdf. Accessed on 26/05/2014.

Page, F. H. and Frank, K. T., (1989) Spawning time and egg stage duration in northwest Atlantic haddock (Melanogrammus aeglefinus) stocks with emphasis on Georges and Browns Bank. Can. 1. Fish. Aquat. Sci. 46(Suppl, I): 68-81.

Payne, M. R., Hatfield, E. M. C., Dickey-Collas, M., Falkenhaug, T., Gallego, A., Gro[¨]ger, J., Licandro, P., Llope, M., Munk, P., Ro[¨]ckmann, C., Schmidt, J. O., and Nash, R. D. M., (2009) Recruitment in a changing environment: the 2000s North Sea herring recruitment failure. – ICES Journal of Marine Science, 66: 272–277.

Payne, M. R., (2010) Mind the gaps: a state-space model for analysing the dynamics of North Sea herring spawning components. – ICES Journal of Marine Science, 67: 1939–1947.

Pierce, G.J., Santos, M.B., Reid, R.J., Patterson, I.A.P. and Ross, H.M., (2004) Diet of minke whales Balaenoptera acutorostrata in Scottish (UK) waters with notes on strandings of this species in Scotland 1992-2002. J. Mar. Biol. Ass. U.K. (2004), 84, 1241-1244.

Richardson, D., Hare, J., Fogarty, M., Link, J. (2011) Role of egg predation by haddock in the decline of an Atlantic herring population, Proceedings of the National Academy of Sciences, vol. 108, pp. 13606

Rogers, S. and R. Stocks (2001). North Sea Fish and Fisheries. Technical Report TR_003 Technical report produced for Strategic Environmental Assessment – SEA2, CEFAS.

Rocha F., Guerra A., González A.F., (2001) A review of reproductive strategies in cephalopods. Biol Rev. 76, 291-304.

Rohlf, N. And Gröger, J., (2010) WD HAWG: Report of the herring larvae surveys in the North Sea in 2009/2010.

Rohlf, N. And Gröger, J., (2009) WD HAWG: Report of the herring larvae surveys in the North Sea in 2008/2009.

Rohlf, N. And Gröger, J., (2006) WD HAWG: Report of the herring larvae surveys in the North Sea in 2005/2006.

Russel, F.D., (1976) The eggs and planktonic stages of British marine fishes. Academic Press, London. 524 pp. In ICES, 2011b: ICES-Fishmap. Available online at http://www.ices.dk/marineworld/fishmap/ices/. Accessed on 12/04/2011.

Santos, M.B., Pierce, G.J., Ieno, E.N., Addink, M., Smeenk, C., Kinze, C.C. and Sacau, M., (2005) Harbour porpoise (Phocoena phocoena) feeding ecology in the eastern North Sea.

Schmidt, J., Rohlf, N. And Gröger, J., (2008) WD HAWG: Report of the herring larvae surveys in the North Sea in 2007/2008.

Schmidt, J., Rohlf, N. And Gröger, J., (2007) WD HAWG: Report of the herring larvae surveys in the North Sea in 2006/2007.

Smith, S.E., Au. D.W., Show, C., (1998) Intrinsic rebound potentials of 26 species of Pacific sharks. Mar. Freshwater. Res., 41:663-678.

Smith, I.P., Jensen, A.C., Collins, K.J. and Mattey, E.L., (2001) Movement of wild European lobsters Homarus gammarus in natural habitat. Marine Ecology Pregress Series. 222:177-186.

Spey Catchment Steering Group, (2003) Catchment Management Plan.

Teal, L.R., van Hal, R., van Damme, C.J.G., Bolle, L.J. and ter Hofstede, R., (2009) Review of the spatial and temporal distribution by life stage for 19 North Sea fish species. IMARES Wageningen UR. C126/09.

Van Damme, C. J. G., Bolle, L. J., Fox, C. J., Fossum, P., Kraus, G., Munk, P., Rohlf, N., Witthames, P. R., and Dickey-Collas, M., (2009) A reanalysis of North Sea plaice spawning-stock biomass using the annual egg production method. – ICES Journal of Marine Science, 66: 1999–2011.

Van der Kooij, J., Scott, B.E., Mackinson S., (2008) The effects of environmental factors on daytime sandeel distribution and abundance on the Dogger Bank. Journal of Sea Research 60 (2008) 201–209.

Wahlberg, M., and Westerberg, H., (2005) Hearing in fish and their reactions to sounds from offshore wind farms. Mar Ecol Prog Ser. Vol. 288: 295–309, 2005.

Walters, M., (2010) Moray Firth Sea Trout Project. Progress report February 2010.

Walters, M., (2011) Moray Firth Sea Trout Project Final Report. A summary of the projects progress, findings and next steps.

Wanless, S., Wright, P.J., Harris, M.P. and Elston, D. A., (2005) Evidence for decrease in size of lesser sandeels Ammodytes marinus in a North Sea aggregation over a 30-yr period. Mar Ecol Prog Ser Vol. 279: 237–246.

Wheeler, A., (1969) The fishes of the British Isles and North-West Europe.Michigan State University Press. Great Britain 613 pp. In Rodríguez-Cabello, C., F. Sánchez, A. Fernández and I. Olaso, 2001. Is the lesser spotted dogfish (Scyliorhinus canicula) from the Cantabrian Sea, a unique stock? ICES CM 2001/O:06

Wheeler, A., (1978) Key to the fishes of northern Europe. Publ. Frederick Warne. Ltd. London. 350 pp. In Rodríguez-Cabello, C., F. Sánchez, A. Fernández and I. Olaso, 2001. Is the lesser spotted dogfish (Scyliorhinus canicula) from the Cantabrian Sea, a unique stock? ICES CM 2001/O:06

Whitehead, P.J.P., Bauchot, M.-L., Hureau, J.-C., Neilsen, J., and Tortonese, E., (1986) Clupeidae. In Fishes of the North-eastern Atlantic and the Mediterranean Volume I. UNESCO, Paris, 268-281.

Winslade, P., (1974a) Behavioural studies on the lesser sandeel Ammodytes marinus (Raitt) I. The effect of food availability on activity and the role of olfaction in food detection. Journal of Fish Biology, 6: 565–576. doi: 10.1111/j.1095-8649.1974.tb05100.

Wright, P.J. and Begg, G.S., (1997) A spatial comparison of common guillemots and sandeels in Scottish waters. – ICES Journal of Marine Science, 54: 578–592

Wright P. J. And Bailey M.C., (1993) Biology of Sandeels in the vicinity of Seabird colonies at Shetland. Fisheries Research Report No. 15/93.

Wright, P.J., and Bailey, M. C., (1996) Timing of hatching in Ammodytes marinus from Shetland waters and its significance to early growth and survivorship. Marine Biology, 126: 143e152. Cited in Jensen *et al* (2003).

Wright, P.J. and Kennedy, F.M., (1999) Proceedings of a workshop held at FRS Marine Laboratory Aberedeen 22-24 February 1999. Fisheries Research Services Report No 12/99.

Wright P.J., (1999a) Development of Survey Methods. In Wright, P.J. and Kennedy, F.M., (1999) Proceedings of a workshop held at FRS Marine Laboratory Aberedeen 22-24 February 1999. Fisheries Research Services Report No 12/99.

Young, I.A.G., Pierce, G.J., Stowasser, G., Santos, M.B., Wang, J., Boyle, P.R., Shaw, P.W., Bailey, N., Tuck, I. And Collins, M.A., (2006) The Moray Firth directed squid fishery. Fisheries Research 78 (2006) 39–43.

Appendices

Appendix 1 – Cod Survey Report Summary

The North Sea cod stock is assessed as a single unit however there is evidence of sub-stock structuring (ICES 2007; Fox *et al.*, 2008). The Moray Firth cod stock is reproductively isolated from other North Sea stocks. Spawning grounds for this species have been defined in the area of the MORL development (i.e. Coull *et al.*, 1998; Ellis *et al.*, 2010) however the degree of spawning activity currently taking place in this area is unknown. The objective of this survey was to determine whether significant cod spawning currently takes place in the area of the Moray Firth Round 3 and its vicinity.

The survey was carried out in two trips between 17th February and 19th March 2013 (Trip A from 17th February to 26th February and Trip B from 10th March to 19th March) coinciding with the peak spawning season. Sampling was undertaking using a commercial rock-hopper otter trawl with a 120 mm mesh cod end, fitted with a 20 mm blinder (provided by Marine Scotland Science, hereinafter referred to as MSS). Fifty-six tows of 30 minutes duration were undertaken within and adjacent to the MORL Round 3 Area to cover areas of the cod spawning grounds defined by Coull *et al.* (1998) where noise levels at which cod may exhibit strong avoidance reactions during the construction phase may occur (90dB_{ht} (*Gadus morhua*) level). Two tows of 60 minutes duration were also carried at the request of MSS to determine whether larger cod were out-swimming the net in the 30 minute tows.

The catch from each otter trawl was emptied into the hopper, photographed, and sorted into baskets by species. The length, sex and spawning condition of all cod was identified and recorded. The gonads of each individual were photographed. In Trip A up to three male gonads and five female gonads of each maturity stage were fixed with 4% seawater buffered formalin solution. Gonad samples were delivered to MSS at the end of Trip A to verify the maturity stage analysis carried out at sea.

Cod were recorded in 35 out of 58 stations in relatively low numbers, with a maximum of nine individuals caught at a single station (0T38, Trip B). A total of 23 spawning cod were caught in the survey, 12 in Trip A and 11 in Trip B.

Cod catch rates will be calculated by MSS using the Scanmar outputs (swept area per tow) and used to determine whether significant cod spawning is taking place in the Moray Firth Round 3 Area and/or in adjacent locations.

All by-catch fish and commercial shellfish species were identified, counted, measured and returned to the sea; where necessary sub-sampling was carried out at sea by species. A total of 45 by-catch species were caught in the survey. Dab (*Limanda limanda*), plaice (*Pleuronectes platessa*), haddock (*Melanogrammus aeglefinus*) and whiting (*Merlangius merlangus*), to a lesser extent, were the principal species found during the survey. Introduction

The following report details the findings of the cod spawning survey undertaken between the 17th February and 19th March 2013 in the Moray Firth Round 3 Area which includes the following four development areas:

- The Telford wind farm;
- The MacColl wind farm;
- The Stevenson wind farm; and
- The Western development area (WDA).

The aim of this survey was to establish the potential degree of cod spawning activity currently taking place in the Moray Firth Round 3 Zone and in adjacent locations. As presented in MORL's Offshore

Generating Station Impact Assessment (Chapter 7.2 - Biological Environment), construction noise was identified as having potential to result in a significant effect on cod, particularly during the spawning season.

The impact assessment on this species, however, took a precautionary approach, where conservative assumptions had to be applied as a result of the uncertainty surrounding available information on the use that this species currently makes of the Moray Firth area. In order to mitigate this uncertainty, MORL committed, in consultation with MSS to undertake additional survey work and monitoring with the objective of increasing the confidence in the impact assessment and identifying whether mitigation is required, and if so, to define feasible measures in order to reduce the significance of the likely effects.

The survey methodology was designed in consultation with MSS. A dispensation from MSS, in accordance with the terms of Section 9 of the Sea Fish Conservation Act 1967 and Article 43 of Council Regulation No. 850/98, to fish in Area IVab, related to days at sea was obtained prior to commencement of this survey. A summary of the Health and Safety performance of the survey is provided in Section 0 -Appendix 1.

Background Information

Cod spawn throughout much of the northern North Sea however there is evidence of sub-stock structuring (ICES 2007; Fox *et al* 2008). In the particular case of the Moray Firth, the cod population has been found to be genetically distinct from other North Sea cod (Hutchinson *et al.*, 2001).

Cod spawn between January and April, with peak spawning taking place from February to March (Coull *et al.*, 1998). Eggs are pelagic and hatch over a period of two to three weeks, depending on water temperature (Wright *et al.*, 2003).

Recent information in relation to the potential use of the central Moray Firth for cod spawning is currently lacking. The assessment of construction noise presented in MORL's Offshore Generating Station Impact Assessment (Chapter 7.2 - Biological Environment) used the grounds depicted in Coull *et al.* (1998) and Ellis *et al.* (2010) in respect to cod spawning and nursery areas, as primary sources of information. According to these publications the Moray Firth Round 3 Area falls within a low intensity spawning and a high intensity nursery ground for cod (Coull *et al.*, 1998, Ellis *et al.*, 2010). The cod spawning and nursery areas as defined in Coull *et al.* (1998) and Ellis *et al.* (2010) are shown in Figure 4.1. In addition to the above, other sources of information (i.e Gibbs *et al.*, 2008) were used to further characterise the current state of knowledge in relation to the potential for the Moray Firth Round 3 Area to support spawning and juvenile cod.

Moray Offshore Renewables Limited

Modified Transmission Infrastructure for Telford, Stevenson and MacColl Wind Farms

Figure 4.1 Cod Spawning and Nursery Grounds (Modified from Ellis et al., 2010)

Survey Methodology

The survey was undertaken between 17th February and 19th March 2013 in order to cover the peak spawning period of this species. As previously mentioned cod spawning occurs between January and April, with peak spawning taking place from February to March.

Two sampling trips were undertaken: Trip A from 17th February to 26th February and Trip B from 10th March to 19th March. During these, a total of 58 stations were sampled using a commercial rock-hopper otter trawl with a 120 mm mesh cod end, fitted with a 20 mm blinder. A summarised log of events is given in Section 0- Appendix 2.

The sampling stations were located within the Moray Firth Round 3 Area and at adjacent locations overlapping both the cod spawning grounds defined in Coull *et al.* (1998) and areas expected to be affected by piling noise during the construction phase at the $90dB_{ht}^{-1}$ (*Gadus morhua*) level).

The noise impact ranges used for selection of sampling stations are as presented in MORL's Offshore Generating Station Impact Assessment (Chapter 7.2 - Biological Environment).

Trip A

A total of 29 tows of 30 minutes duration were undertaken within and adjacent to the MORL Round 3 Area. OT49 was an additional tow to the north east of the Jackie oil field undertaken at the request of MSS.

The otter trawl tow tracks of Trip A are given in Figure 4.2. The start and end times, co-ordinates, depths and durations of each otter trawl tow are given in Section 0- Appendix 3.

Trip B

A total of 29 tows were undertaken, seven of which were repeated from Trip A (OT22-OT28). As in Trip A the tow duration was of 30 minutes with the exception of the tows undertaken at station OT08 and station OT39, which were of 60 minutes duration. These were carried out to determine whether larger cod were out-swimming the net in the 30 minute tows at the request of MSS.

The otter trawl tow tracks of Trip B are given in Figure 4.3. The start and end times, co-ordinates, depths and durations of each otter trawl are given in Section O- Appendix 3.

¹ The dB_{ht} (*Species*) metric takes account of the hearing ability and expected response to underwater noise on a species specific basis. The noise impact ranges defined at the $90dB_{ht}$ (*Gadus morhua*) level represent sea areas where the majority of cod would be expected to exhibit strong avoidance reactions.

Figure 4.2 Trip A - Vessel Tracks whilst Towing the Otter Trawl

44

Figure 4.3 Trip B – Vessel Tracks whilst Towing the Otter Trawl

Survey Vessel

The vessel chartered for the survey (Figure 4.4), the "Seagull", is a Peterhead-based commercial trawler. The specifications of the vessel are given below in Table 4.1.

Figure 4.4 Survey Vessel "Seagull"

Table 4.1 Survey Vessel Specifications

	Survey Vessel Specifications
Length	27.41 m
Beam	8.52 m
Draft	4.9 m
Main engine	Deutz MWM Marine TBD620 V12, 1340 kW
Gearbox	Hemidal HG470F 7.07:1 reduction
Propeller	4 Blade Variable Pitch 2.9m diameter with a Kort Nozzle
GPS	1 x Dassault Sercel NR51, 1 x Furuno
Plotters	Sodena Plotter with Electronic Charts x 2
Sounder	Atlas 783 Colour
Scanmar	RX400 and Scanmate

Sampling Gear

A commercial rock-hopper otter trawl (Figure 4.5) with a 120 mm mesh cod end, fitted with a 20 mm blinder provided by MSS was used for cod sampling; the specifications of which are detailed below in Table 4.2.

In order to calculate trawl swept areas during each tow, a receiver and data processing unit (Scanmar RX400) was used to receive data from three Scanmar S400 sensors, two of which were fitted at the wing-ends and one in the headline.

Figure 4.5 Rock-hopper Otter Trawl Used

Rock-hopper Otter Trawl Specifications					
Towing warp	Steel core diaform 24 mm, 1463 m on each of three winches				
Sweep Length	109.7 m with 27.43 m of split chain				
Depth: payout ratio	3:1				
Trawl Doors	Thyboron, 1 tonne, single tow point, 3 back attachments				
Net	Seaway net with 120mm mesh bag and cod end (fitted with a 20 mm blinder)				
Groundline	5121 cm, rock-hopper with 31 and 35.6 cm bobbins				
Estimated headline height	6.4 m				
Distance between trawl doors (est.)	73.1 m				

Table 4.2 Rock-hopper Otter Trawl Specifications

Sampling Procedures

Positioning and Navigation

The position of the vessel was tracked at all times using a Garmin GPSMap 278 with an EGNOS differential connected to an external Garmin GA30 antenna. Otter trawl start times and positions were taken when the skipper advised that the gear was settled (i.e. the headline and wing end

Scanmar sensors showed little movement and had reached the appropriate spread). Otter trawl end times and positions were taken when hauling of the gear commenced.

Otter Trawl Sampling

The catch from each otter trawl was emptied into the hopper, photographed and sorted into baskets by species. The length, sex and spawning condition of all cod was identified and recorded. The gonads of each individual were photographed. In Trip A up to 3 male gonads and 5 female gonads of each maturity stage were fixed with 4% seawater buffered formalin solution. Gonad samples were delivered to MSS at the end of Trip A to verify the maturity stage analysis carried out at sea.

The gonadal maturity key used was as provided by MSS (Bucholtz *et al.*-Draft Manual to determine gonadal maturity of North Sea cod (*Gadus morhua L*)). The maturity stages used are described in Table 4.3 below. As shown, stage III cod is considered to be in spawning condition. Examples of spawning and spent individuals are provided in Section 0- Appendix 4.

Chama		Description of Appearance						
	Stage	Female	Male					
I	Juvenile/immature	Ovaries small but easily distinguishable posterior in body cavity, soft with smooth surface, blurred translucent, reddish-orange	Testes small, but distinguishable along air bladder. Lobules small, blurred translucent reddish-white					
II	Maturing	Ovaries occupy between half and 2/3 of the body cavity, plump and firm with prominent blood vessels, opaque, orange to creamy yellow. Oocytes clearly visible and densely packed	Testes enlarged and prominent dorsal in body cavity; lobules plump and brittle; reddish- white. Empty transparent spermatoducts with prominent blood vessels; no sperm release					
111	Spawning	Ovaries fill most of body cavity; very distended and soft; appear granulated orange- to reddish-grey from mixture of opaque and glassy oocytes. Lumen containing viscous fluid in excess or hydrated eggs	Testes large and prominent in body cavity. Lobules still plump, but soft; completely opaque, whitish. Spermatoducts filled with fluid, milky semen that easily flows from vent					
IV	Spent	Ovaries contracted; slack with greyish cast; rich in blood vessels; dim translucent reddish- grey. Vitollogenic oocytes absent but single hydrated eggs or atretic oocytes (opaque irregular granules) may occur	Testes contracted, close to air bladder; rich in blood vessels. Lobules empty, flabby, reddish potentially with a greyish cast. Spermatoducts with signs if previous distension, often with visible remains of semen					
v	Resting/Skip of spawning	Ovaries small as in stage I but with signs of previous spawning; e.g. greyish cast and somewhat uneven walls; blurred translucent, reddish-grey, but more granulated and opaque than in stage I	Testes small but with signs of previous spawning; e.g. lobules slightly larger than in stage I; spermatoducts often with a greyish cast					
vi	Abnormal	Stone roe. Ovary has a thick wall, grey-whitish cast and hard parts	Testes with adipose tissue formation; affected parts undeveloped, hard and yellowish					

Table 4.3 Cod maturity key (adapted from Bucholtz et al. Draft Manual)

By-catch species were identified, counted, measured and returned to the sea; where necessary subsampling was carried out at sea by species.

Otter Trawl Results

Cod

Cod were caught in 35 of the 58 stations sampled, with a maximum of nine individuals recorded in a single station (OT38, trip B). In general terms, cod were found in very low numbers with a total of 73 individuals being caught during the survey (Trip A + Trip B).

A total of 48 juveniles (stage I) and 25 adults (23 of which were spawning -stage III and two spent - stage IV) were caught. Twelve spawning cod were recorded in Trip A and 11 in Trip B. A maximum of four spawning individuals were found at a single station (Trip A, OT08). The number of males and females was approximately even (36 females and 34 males).

The numbers of cod caught by station are shown in Table 4.4 and Table 4.5 for Trip A and Trip B, respectively. Catch rates will be calculated by MSS using the Scanmar outputs (swept area per tow) and used to determine whether significant cod spawning is taking place in the Moray Firth Round 3 Area and/or in adjacent locations.

Trip A

The numbers of cod caught by station during Trip A together with the length, sex and maturity stage of each individual is shown in Table 4.4.

The spatial distribution of the cod catch recorded in Trip A is given in Figure 4.6. The percentage contribution of spawning cod (maturity stage III) to the total catch in each sampling station is also shown.

Trip A Station	Length (cm)	Sex	Spawning Condition	Total No. of Individuals	Total No. of Spawning Cod
OT03	22	F	I	1	0
OT04	17	F	I	1	0
OT05	46	М	III	1	1
	18	М	I		
	33	Μ	III		
OT08	36	Μ	III	5	4
	46	Μ	III		
	50	F			
OT09	37	F	I	1	0
OT10	54	Μ	III	2	2
0110	67	Μ	III	Ζ	Z
OT11	46	F		2	2
UTT	68	М		Z	۷
OT13	56	М	I	1	
OT15	13	U	I	2	1
	42	M		۷	1
OT16	19	F	1	2	0
0110	20	F	I	۷	0
OT18	46	Μ		1	1
	17	F	I		
	18	F	I		0
OT21	19	F	I	6	
0121	19	U	I	0	0
	21	Μ	I		
	26	U	I		
OT24	14	F	I		
	15	F	I	3	0
	15	Μ	I		
	16	М	I		
OT25	18	F		3	0
	22	F			

Table 4.4 Numbers of Cod, Sex and Spawning Condition by Sampling Station (30 min duration tows) – Trip A

Moray Offshore Renewables Limited

Modified Transmission Infrastructure for Telford, Stevenson and MacColl Wind Farms

Trip A Station	Length (cm)	Sex	Spawning Condition	Total No. of Individuals	Total No. of Spawning Cod
	20	Μ	I		0
0727	20	F	I	Л	
0127	22	Μ	I	4	
	22	F	I		
OT49	49	М		1	1
Total No. of Individua	als	36	12		

Technical Appendix 4.2 A

Trip B

The number of cod caught by station during Trip B together with the length, sex and maturity stage of each individual is shown in Table 4.5. The spatial distribution of the cod catch recorded in Trip B is given in Figure 4.7. The percentage contribution of spawning cod (maturity stage III) to the total catch in each sampling station is also shown.

Trip B Station	Length (cm)	Sex	Spawning Condition	Total No. of Individuals	Total No. of Spawning Cod
OT22	49	М		1	1
	13	F	I		
OT24	14	F	I	3	0
	16	Μ	I		
0T27	15	F	I	2	1
0127	43	Μ		Ζ.	I
0T20	50	F	III	2	1
0129	55	F	IV	Ζ.	I
	16	M	I		
0720	16	Μ	I	4	0
0130	18	Μ	I	4	0
	22	М	I		
OT31	21	М	I	1	0
OT34	37	F	III	1	1
OT35	18	Μ	I	1	0
OT36	43	F	III	1	1
OT37	25	F	I	1	0
	14	F	I		
	14	M	I		
	16	F	I		
	17	F	I		
OT38	17	Μ	I	9	1
	18	F	I		
	18	M	I		
	20	M	I	-	
	45	Μ	III		
OT39	17	Μ	I	1	0
0740	39	Μ	I	2	1
0140	41	F	III	۷۲	I
OT43	43	F	I	1	0
OT44	74	F	III	1	1
OT47	55	F	IV	1	0
OT48	20	F	I	1	0
OT09 1bour	49	F	III	2	2
	57	М		۷	۷
OT20 1bour	20	F			1
	54	F		۷	1
Total No. of Individua	ls			37	11

Table 4.5 Total Numbers of Cod, Sex and Spawning Condition by Sampling Station (30 min duration tows) – Trip B

53

By-catch

A total of 49,583 individuals of 45 fish and commercial shellfish species were caught in the survey.

The by-catch recorded in Trip A and Trip B is given by species in Table 4.6 and Table 4.7, respectively.

Dab, plaice, haddock, and whiting, to a lesser extent, were the principal species found during the survey.

Table 4.6 Numbers of Individuals Caught (By-Catch) in Trip A

	Total No. of Individuals Cought	
Common Name	Scientific Name	
Dab	Limanda limanda	9,692
Plaice	Pleuronectes platessa	8,196
Haddock	Melanogrammus aeglefinus	6,230
Herring	Clupea harengus	1,449
Whiting	Merlangius merlangus	449
Long Rough Dab	Hippoglossoides platessoides	353
Grey Gurnard	Eutrigla gurnardus	203
Lemon Sole	Microstomus kitt	203
Poor Cod	Trisopterus minutus	202
Sprat	Sprattus sprattus	160
Saithe	Pollachius virens	133
Bullrout	Myoxocephalus scorpius	93
Queen Scallop	Aequipecten opercularis	86
Sandeel (indet.)	Ammodytidae sp.	51
Greater Sandeel	Hyperoplus lanceolatus	21
John Dory	Zeus faber	18
Sea Scorpion	Taurulus bubalis	17
Hake	Merluccius merluccius	14
Lesser Spotted Dogfish	Scyliorhinus canicula	12
Long-finned Squid	Loligo forbesii	10
Common Dragonet	Callionymus lyra	8
Nephrops	Nephrops norvegicus	6
Thickback Sole	Microchirus variegatus	5
Pogge	Agonus cataphractus	4
Mackerel	Scomber scombrus	3
Red Gurnard	Aspitrigla cuculus	3
Brill	Scophthalmus rhombus	2
Cuckoo Ray	Raja naevus	2
Flounder	Platichthys flesus	2
Ling	Molva molva	2
Edible Crab	Cancer pagurus	1
Fifteen Spined Stickleback	Spinachia spinachia	1
Lesser Weever	Echiichthys vipera	1
Lumpsucker	Cyclopterus lumpus	1
Norway Pout	Trisopterus esmarkii	1
Whelk	Buccinum undatum	1
Witch	Glyptocephalus cynoglossus	1
Juvenile Gadoid	Gadidae sp.	P
Total No. of Individuals		27,636

	Species				
Common Name	Scientific Name	Total No. of Individuals Caught			
Dab	Limanda limanda	7,295			
Haddock	Melanogrammus aeglefinus	6,016			
Plaice	Pleuronectes platessa	4,990			
Whiting	Merlangius merlangus	988			
Sprat	Sprattus sprattus	603			
Long Rough Dab	Hippoglossoides platessoides	509			
Lemon Sole	Microstomus kitt	369			
Grey Gurnard	Eutrigla gurnardus	285			
Nephrops	Nephrops norvegicus	254			
Poor Cod	Trisopterus minutus	155			
Bullrout	Myoxocephalus scorpius	125			
Queen Scallop	Aequipecten opercularis	82			
Greater Sandeel	Hyperoplus lanceolatus	41			
Herring	Clupea harengus	37			
Sandeel (indet.)	Ammodytidae sp.	30			
Sea Scorpion	Taurulus bubalis	27			
Common Dragonet	Callionymus lyra	26			
Saithe	Pollachius virens	25			
Long-finned Squid	Loligo forbesii	15			
Lesser Spotted Dogfish	Scyliorhinus canicula	10			
Pollack	Pollachius pollachius	9			
Red Gurnard	Aspitrigla cuculus	9			
John Dory	Zeus faber	8			
Thickback Sole	Microchirus variegatus	7			
Ling	Molva molva	6			
Pogge	Agonus cataphractus	4			
Spotted Dragonet	Callionymus maculatus	4			
Hake	Merluccius merluccius	3			
Lumpsucker	Cyclopterus lumpus	3			
Anchovy	Engraulis encrasicolus	2			
Norway Pout	Trisopterus esmarkii	2			
Bib	Trisopterus luscus	1			
Blue Mouth	Helicolenus dactylopterus	1			
Brill	Scophthalmus rhombus	1			
Cuckoo Ray	Raja naevus	1			
Mackerel	Scomber scombrus	1			
Scaldfish	Arnoglossus laterna	1			
Starry Smoothhound	Mustelus asterias	1			
Witch	Glyptocephalus cynoglossus	1			
Juvenile Whiting	Merlangius merlangus	Р			
Total No. of Individuals		21,947			

Table 4.7 Numbers of Individuals Caught (By-Catch) in Trip B

The spatial distribution of the catch of the principal species found in the survey (dab, plaice, haddock and whiting) is given in Figure 4.8 to Figure 4.15 below by survey trip.

In addition to the above, the spatial distribution of the sandeel and herring catch recorded in the survey is also shown (Figure 4.16 to Figure 4.19) as concerns in relation to these two species were raised during the EIA process. The limitations of the catch records for these two species are however fully recognised (i.e catchability in demersal trawls and timing of the survey).

Figure 4.8 Spatial Distribution of Dab caught during Trip A

Figure 4.9 Spatial Distribution of Dab caught during Trip B

Figure 4.10 Spatial Distribution of Plaice caught during Trip A

Figure 4.11 Spatial Distribution of Plaice caught during Trip B

Figure 4.12 Spatial Distribution of Haddock caught during Trip A

Figure 4.13 Spatial Distribution of Haddock caught during Trip B

Figure 4.14 Spatial Distribution of Whiting caught during Trip A

Figure 4.15 Spatial Distribution of Whiting caught during Trip B

Figure 4.16 Spatial Distribution of Sandeels caught during Trip A

Figure 4.17 Spatial Distribution of Sandeels caught during Trip B

Figure 4.18 Spatial Distribution of Herring caught during Trip A

Figure 4.19 Spatial Distribution of Herring caught during Trip B

References

Bucholtz, R.H., Tomkiewicz, J., Vitale, F., Dalskov, J., Wilhehelms, I., Sell, A., Bland, B., Gibb, I., and power, G., (Draft) Manual to determine gonadal maturity of North Sea cod (*Gadus morhua L*). National Institute of Aquatic Resources. Department of Marine fisheries. Technical University of Denmark.

Coull, K.A., Johnstone, R., and Rogers, S.I., (1998) Fisheries Sensitivity Maps in British Waters. UKOOA Ltd.

Ellis, J.R., Milligan, S., Readdy, L., South, A., Taylor, N., and Brown, M., (2010) Mapping spawning and nursery areas of species to be considered in Marine Protected Areas (Marine Conservation Zones).

Fox CJ, Taylor M, Dickey-Collas M, Fossum P, Kraus G, Rohlf N, Munk P, van Damme CJ, Bolle LJ, Maxwell DL and Wright PJ (2008) Mapping the spawning grounds of North Sea cod (Gadus morhua) by direct and indirect means. Proc Biol Sci. 2008 Jul 7;275(1642):1543-8.

Gibb, I. M., Peter J. Wright & Rory Campbell., (2008) Identifying Critical Spawning and Nursery Areas for North Sea Cod; Improving The Basis for Cod Management. Scottish Industry/Science Partnership (SISP) Report No 03/08.

Hutchinson, W.F., Carvalho, G.R. and Rogers, I., (2001) Marked genetic structuring in localised spawning populations of cod *Gadus morhua* in the North Sea and adjoining waters, as revealed by microsatellites. Mar Ecol Prog Ser. Vol. 223: 251–260, 2001.
ICES, (2007) Results of the spring 2004 North Sea ichthyoplankton surveys. ICES Cooperative Research Report, No. 285. 64 pp.

Wright, P.J., Gibb, F.M., Gibb, I.M., Heath, M. R. and McLay, H.A., (2003) North Sea cod spawning grounds. Fisheries Research Services Internal Report No 17/03.

Appendix 2 – Health and Safety

Personnel

Brown and May Marine (BMM) staff followed the standard health and safety protocol outlined in the BMM "Offshore Operational Procedures for Surveys using Commercial Fishing Vessels".

All BMM staff have completed a Sea Survival course approved by the Maritime and Coastguard Agency, meeting the requirements laid down in: STCW 95 Regulation VI/1 para 2.1.1 and STCW Code section A- VI/1 before boarding any vessel conducting works for the company. Employees are also required to have valid medical certificates (ENG1), Safety Awareness, Basic Fire Fighting and Basic First Aid certificates before participating in offshore works.

Vessel Induction

Before boarding the survey team were shown how to safely board and disembark the vessel. Prior to departure the skipper briefed surveyors on the whereabouts of the safety equipment, including the life raft, emergency flares and fire extinguishers, and the location of the emergency muster point. The safe deck areas, man-overboard procedures and emergency alarms were also discussed. The survey team was warned about the possible hazards, such as slippery decks and obstructions whilst aboard. Surveyors were briefed about trawling operations and the need to keep clear of all winches when operational. All hazards were assessed prior to the survey in the BMM health and safety risk assessment.

Daily Safety Checks

The condition of the life jackets, EPIRB's, and life raft were inspected daily. Also checked were the survey team working areas, including the fish room and the wheelhouse to ensure these areas were clear of hazards such as clutter and obstructions.

Post Trip Survey Review

Upon completion of the survey a "Post Trip Survey Review" was filled, see Table 4.8 below.

Project: MODI Cod Survey February/March 2012	Maccali Soogull			
Project: MORE Cod Sulvey February/March 2013	vesser: seagun			
Surveyors: Lucy Shuff, Jose Peiro	Skipper: Gary Mutch			
Survey Area: Moray Firth	Total Time at Sea: 16 Days			
Dates at Sea: 18/02/13 - 25/02/13, 11/03/13 - 18/03/13				
	Comments	Actions		
Did vessel comply with pre trip safety audits?	Yes (audited by Noble Denton 15/02/13)	N/A		
Skipper and crew attitude to safety?	Good	N/A		
Vessel machinery failures?	None	N/A		
Safety equipment failures?	None	N/A		
Accidents?	None	N/A		
Injuries?	None	N/A		

Table 4.8 Post Trip Survey Review

Appendix 3 – Survey Log A summarized log of events is given below in Table 4.9 for Trip A and in Table 7.3 overleaf for Trip B.

Table 4.9 Summarised Log of Events for Trip A, 17th to 26th February 2013
Friday 15 th February 2013
Vessel audit completed by Noble Denton
Sunday 17 th February 2013
Surveyors depart BMM, travel to South Queensferry, Edinburgh
Monday 18 th February 2013
Travel to Peterhead, mobilise vessel (Gareth Jones, Phil (MSS), John Watt, Stephen Appleby and Peter Moore in
attendance)
Depart Peterhead at 2315 hrs, steam to survey area overnight
Overnight at sea
Tuesday 19 th February 2013
Otter Trawls: 0109 (1 x stage I cod), 0125 (3 x stage I cod), 0121 (6 x stage I cod), 0115 (1 x stage I and 1 x stage III cod), 0127 (4 x stage I cod)
Weather: BE1-3 smooth/slight
Overnight at sea
Wednesday 20 th February 2013
Otter Trawls: OT05 (1 x stage III cod) OT06 OT02 OT01
Steam inshore at 1530 hrs to shelter under the land
Weather: BE6/7 moderate to rough
Thursday 21 st February 2013
Otter Trawls: OT22_OT07_OT23_OT10 (2 x stage III cod)_OT18 (1 x stage III cod)
Weather: RE5/6 moderate
Overnight at sea
Friday 22 nd February 2013
Otter Trawls: OT49 (1 x stage III cod 37 x sandeel) OT13 (1 x stage I cod 12 x sandeel) OT26 (14 x sandeel) OT17 (2 x
sandeel), OT19 (3 x sandeel)
Weather: BF3/4, slight
Overnight at sea
Saturday 23 rd February 2013
Otter Trawls: OT28, OT20 (4 x sandeel), OT16 (2 x stage I cod), OT14, OT11 (2 x stage III cod, 1 x sandeel)
Weather: BF3/4, slight
Overnight at sea
Sunday 24 th February 2013
Otter Trawls: OT12, OT24 (3 x stage I cod), OT08 (1 x stage I and 4 x stage III cod), OT03 (1 x stage I cod)
Weather: BF2/3, slight
Overnight at sea
Monday 25 th February 2013
Otter Trawls: OT04 (1 x stage I cod)
Steam to Peterhead, arrive at 1230 hrs
Land samples and take to Marine Scotland, surveyors travel to South Queensferry, Edinburgh
Weather: BF2, slight
Tuesday 26 th February 2013
Demobilise survey vessel
Surveyors return to BMM

Table 4.3 Summarised Log of Events for Trip B, 10th to 19th March 2013 Sunday 10th March 2013

Surveyors depart BMM, travel to South Queensferry, Edinburgh

Monday 11th March 2013

Travel to Peterhead, collect survey equipment from Marine Scotland, mobilise vessel

Client Representative arrived at vessel at approximately 2300 hrs

Depart Peterhead at 0000 hrs, steam to survey area overnight

Overnight at sea

Tuesday 12th March 2013

Otter Trawls: OT34 (1 x stage III cod), OT33 (repeated due to Scanmar error, OT32, OT22 (1 x stage III cod)

Weather:BF4/5, moderate

Overnight at sea

Wednesday 13th March 2013

Otter Trawls: OT41, OT23, OT40 (1 x stage I and 1 x stage III cod, 1 x sandeel), OT42, OT46

Weather: BF3-5, moderate, decreasing

Overnight at sea

Thursday 14th March 2013

Otter Trawls: OT26 (25 x sandeel), OT43 (1 x stage I cod, 6 x sandeel), OT24 (3 x stage I cod), OT35 (1 x stage I cod), OT08B (1 hour, 2 x stage III cod)

Weather: BF2/3, slight

Steam into Macduff, arrive at 2330 hrs, client representative disembarked vessel

Return to survey area

Overnight at sea

Friday 15th March 2013

Otter Trawls: OT30 (4 x stage I cod), OT31, OT36 (1 x stage III cod), OT39 (1 x stage I cod), OT39B (1 hour, 1 x stage III and 1 x stage I cod, 1 x stageI)

Weather: BF2-4, slight

Overnight at sea

Saturday 16th March 2013

Otter Trawls: OT44 (1 x stage III cod, 3 x sandeel), OT45, OT47 (1 x stage IV cod, 3 x sandeel), OT28 (24 x sandeel), OT48 (1 x stage I cod)

Weather: BF2/3, slight

Overnight at sea

Sunday 17th March 2013

Otter Trawls: OT27 (1 x stage I and 1 x stage III cod) OT38 (8 x stage I and 1 x stage III cod), OT37 (1 x stage I cod), OT25 Weather: BF5/6, moderate

Overnight at sea

Monday 18th March 2013

Otter Trawls: OT29 (1 x stage III and 1 x stage IV cod)

Steam to Macduff due to poor weather conditions, arrive at 1530 hrs

Take survey equipment to Marine Scotland, surveyors travel to South Queensferry, Edinburgh

Weather: BF6-8, moderate to rough

Tuesday 19th March 2013

Demobilise survey vessel

Surveyors return to BMM

Appendix 4 – Times and Coordinates Trip A Otter Trawls

Table 4.10 Start and End Times, Co-ordinates and Duration of Each Otter Trawl during Trip A

			Sta	art		End				
Station Date	Date	Time	UTM30N		Depth	Time	UTM30N		Depth	Duration (hh:mm:ss)
		(GMT)	Easting	Northing	(m)	(GMT)	Easting	Northing	(m)	
OT01	20/02/2013	13:18:57	499,521.7	6,418,304.5	91.6	13:48:58	499,499.3	6,415,935.1	89.4	00:30:01
OT02	20/02/2013	11:41:58	503,323.4	6,423,729.6	84.5	12:12:11	502,594.9	6,421,373.7	90.5	00:30:13
OT03	24/02/2013	15:33:26	528,664.2	6,422,689.7	74.0	16:03:26	528,506.5	6,420,044.7	68.4	00:30:00
OT04	25/02/2013	07:35:26	536,381.1	6,426,277.9	83.4	08:05:37	536,259.7	6,423,494.1	85.4	00:30:11
OT05	20/02/2013	07:58:27	513,305.9	6,426,202.5	80.4	08:28:30	512,669.7	6,428,759.5	74.4	00:30:03
OT06	20/02/2013	09:58:05	507,677.6	6,430,593.0	54.1	10:28:31	506,175.3	6,428,280.7	71.5	00:30:26
OT07	21/02/2013	09:40:00	497,136.3	6,431,578.6	55.7	10:10:01	497,019.6	6,434,062.6	53.4	00:30:01
OT08	24/02/2013	12:14:29	519,013.1	6,435,606.6	68.4	12:44:29	518,830.4	6,433,099.6	71.3	00:30:00
OT09	19/02/2013	08:09:03	544,193.7	6,435,600.7	68.2	08:39:04	544,045.0	6,432,866.7	116.5	00:30:01
OT10	21/02/2013	13:51:12	487,475.3	6,437,960.6	56.1	14:21:12	487,679.6	6,440,666.3	58.7	00:30:00
OT11	23/02/2013	16:13:42	517,261.1	6,444,438.7	52.8	16:43:42	516,668.9	6,442,056.7	54.1	00:30:00
OT12	24/02/2013	08:13:42	512,910.4	6,444,138.6	49.9	08:43:42	512,953.8	6,446,439.7	44.6	00:30:00
OT13	22/02/2013	09:14:13	505,158.2	6,446,769.4	44.2	09:44:12	505,165.5	6,449,396.2	46.8	00:29:59
OT14	23/02/2013	14:40:35	520,058.8	6,450,681.2	57.0	15:10:35	520,650.3	6,448,477.2	55.6	00:30:00
OT15	19/02/2013	14:36:51	528,580.4	6,449,377.0	56.5	15:06:51	528,106.9	6,451,899.5	57.6	00:30:00
OT16	23/02/2013	12:11:01	522,543.6	6,452,860.7	59.4	12:41:01	522,532.6	6,450,511.5	59.0	00:30:00
OT17	22/02/2013	12:15:42	512,993.4	6,450,305.9	48.4	12:45:42	513,449.0	6,452,992.7	49.5	00:30:00
OT18	21/02/2013	16:05:36	499,644.0	6,451,808.1	64.2	16:34:35	499,367.5	6,454,206.8	67.6	00:28:59
OT19	22/02/2013	14:44:39	512,801.0	6,456,148.6	48.4	15:14:38	512,694.2	6,453,851.6	49.5	00:29:59
OT20	23/02/2013	09:51:18	517,105.7	6,455,164.3	47.3	10:21:18	517,251.1	6,452,401.1	55.7	00:30:00
OT21	19/02/2013	12:09:53	535,875.9	6,445,196.4	72.6	12:39:54	536,259.0	6,447,667.4	61.0	00:30:01
OT22	21/02/2013	07:52:24	493,117.5	6,423,738.7	57.8	08:22:23	493,093.8	6,426,261.6	58.8	00:29:59
OT23	21/02/2013	11:13:35	499,169.4	6,438,253.5	51.4	11:43:36	499,055.0	6,440,976.5	47.9	00:30:01
OT24	24/02/2013	09:40:22	512,936.6	6,441,422.2	52.6	10:10:22	513,015.2	6,438,586.8	58.5	00:30:00
OT25	19/02/2013	10:09:49	534,375.2	6,438,567.0	73.7	10:39:50	534,922.9	6,441,182.3	67.3	00:30:01
OT26	22/02/2013	10:45:17	509,406.3	6,449,816.9	45.0	11:15:16	509,367.5	6,452,431.4	42.4	00:29:59
OT27	19/02/2013	16:00:45	524,628.4	6,450,126.9	55.4	16:30:45	524,481.7	6,452,679.0	58.8	00:30:00
OT28	23/02/2013	08:14:29	517,092.7	6,459,821.5	51.9	08:44:30	516,922.0	6,457,021.5	50.3	00:30:01
OT49	22/02/2013	07:43:47	502,815.7	6,451,726.9	43.7	08:13:48	502,448.7	6,449,028.3	42.0	00:30:01

Trip B Otter Trawls Table 4.11 Start and End Times, Co-ordinates and Duration of Each Otter Trawl during Trip B										
	Start			End						
Station	Date	Time (GMT) Easting Northing (m)	UTM30N		Depth	Time	UTM30N		Denth	Duration
			(GMT)	(GMT) Easting Northing	(m)	(,				
OT22	12/03/2013	17:32:51	492,985.1	6,426,215.2	57.0	18:02:52	492,957.4	6,423,665.3	54.8	00:30:01
OT23	13/03/2013	10:37:59	499,076.5	6,439,357.5	49.5	11:07:59	498,976.5	6,436,519.3	54.6	00:30:00
OT24	14/03/2013	12:06:43	513,032.1	6,440,858.4	53.4	12:36:43	513,061.7	6,438,105.0	59.0	00:30:00
OT25	17/03/2013	17:16:55	534,515.0	6,439,651.4	67.6	17:46:55	533,917.3	6,437,299.9	65.1	00:30:00
OT26	14/03/2013	09:23:33	509,041.1	6,449,217.1	42.6	09:53:33	509,396.7	6,451,790.5	44.2	00:30:00
OT27	17/03/2013	09:11:31	524,492.7	6,452,818.9	57.9	09:41:31	524,784.3	6,450,194.6	54.6	00:30:00
OT28	16/03/2013	14:15:47	516,846.6	6,456,911.7	51.0	14:45:53	516,838.7	6,459,448.6	52.6	00:30:06
OT29	18/03/2013	08:14:58	511,006.1	6,417,994.0	100.0	08:44:58	511,196.4	6,415,350.2	96.0	00:30:00
OT30	15/03/2013	09:39:10	520,803.6	6,423,232.1	88.8	10:09:12	520,074.9	6,420,632.7	71.7	00:30:02
OT31	15/03/2013	11:50:00	524,931.1	6,431,025.2	75.7	12:22:40	525,052.9	6,433,745.1	76.2	00:32:40
OT32	12/03/2013	15:36:48	491,487.5	6,434,298.6	49.2	16:06:50	491,580.4	6,436,431.4	47.7	00:30:02
OT33	12/03/2013	13:03:39	502,981.3	6,435,951.8	54.6	13:33:40	502,884.9	6,438,632.6	53.0	00:30:01
OT34	12/03/2013	09:24:54	510,560.4	6,435,378.3	53.4	09:55:09	510,666.6	6,437,626.5	52.1	00:30:15
OT35	14/03/2013	14:24:14	516,886.2	6,439,890.1	58.1	14:54:13	516,859.7	6,437,238.4	59.9	00:29:59
OT36	15/03/2013	14:32:52	523,010.1	6,439,642.6	61.0	15:03:01	522,958.4	6,442,241.2	60.1	00:30:09
OT37	17/03/2013	13:30:46	528,533.4	6,445,191.6	56.3	14:00:44	528,649.3	6,442,365.6	61.8	00:29:58
OT38	17/03/2013	10:40:19	524,714.0	6,448,293.3	55.7	11:10:20	524,464.9	6,445,676.2	55.9	00:30:01
OT39	15/03/2013	16:10:59	520,730.3	6,443,925.8	55.9	16:40:58	520,731.9	6,446,683.6	55.0	00:29:59
OT40	13/03/2013	13:14:31	507,321.8	6,442,338.3	44.6	13:44:32	507,316.3	6,445,167.7	44.6	00:30:01
OT41	13/03/2013	08:37:15	495,693.3	6,446,458.2	55.0	09:07:18	495,703.8	6,448,833.0	64.7	00:30:03
OT42	13/03/2013	14:44:26	502,348.5	6,445,777.3	42.0	15:14:26	502,421.6	6,448,716.0	41.3	00:30:00
OT43	14/03/2013	10:46:05	510,863.8	6,447,528.5	44.8	11:16:06	510,880.0	6,444,625.5	47.9	00:30:01
OT44	16/03/2013	08:30:18	516,393.1	6,448,261.1	51.4	09:00:47	516,369.4	6,451,028.8	52.3	00:30:29
OT45	16/03/2013	10:08:16	518,747.2	6,451,986.8	51.7	10:38:16	518,789.8	6,454,576.2	53.4	00:30:00
OT46	13/03/2013	16:30:25	506,915.6	6,455,662.7	42.6	17:00:35	507,004.3	6,453,318.5	40.7	00:30:10
OT47	16/03/2013	11:40:45	514,378.0	6,454,876.4	49.5	12:10:45	514,662.1	6,457,250.1	44.8	00:30:00
OT48	16/03/2013	16:39:08	520,569.6	6,457,908.1	53.4	17:09:10	520,415.9	6,455,319.6	54.8	00:30:02
OT08 1 Hour	14/03/2013	15:48:53	518,762.0	6,436,998.2	65.4	16:48:53	518,790.6	6,431,869.9	70.9	01:00:00
OT39 1 Hour	15/03/2013	17:05:47	521,352.7	6,446,580.4	55.6	18:05:46	521,568.1	6,441,309.5	58.7	00:59:59

Appendix 5 – Examples of Spawning and Spent Cod Stage III Spawning *Trip A*

Figure 4.20 OT05 Male 46 cm

Figure 4.21 OT10 Male 54 cm

Figure 4.23 OT18 Male Length 45 cm

Figure 4.25 OT11 Female 46 cm

Figure 4.26 OT11 Male 68 cm

Figure 4.27 OT08 Male 33 cm

Figure 4.29 OT08 Female 50 cm

Figure 4.30 OT08 Male 36 cm

Figure 4.31 OT34 Female 34 cm

Figure 4.32 OT22 male 49 cm

Figure 4.33 OT40 Female 41 cm

Figure 4.35 OT08_1hour Female 50 cm

Figure 4.36 OT36 female 43 cm

Figure 4.37 OT39_1hour Female 54 cm

Figure 4.39 OT38 Male 45 cm

Figure 4.40 OT29 Female 50 cm

- Andrews			and the
TULAN	Trip: B Sex:	ORL Cod Survey OT: 29 Length: EE	46 47 48
	Maturity Stage: Date: Brown	IV. Spent 37 18/3/13 n & May Marine Ltd.	
		Contraction of the second	

Figure 4.41 OT29 Female 55 cm

MORL Cod Survey Trip: B OT: 4-7 Sex: F Length: 55
Maturity Stage: IV. Spent Date: 16313 Brown & Marine Ltd.

Figure 4.42 OT47 Female 55 cm

